In-depth Exploration of the Basics of Microfluidic Cell Deformability to Unveil its Applications in the Modern Era
- Авторлар: Rani P.1, Nanda B.1, Bhatia R.1
-
Мекемелер:
- Department of Pharmaceutical Analysis, ISF College of Pharmacy
- Шығарылым: Том 30, № 21 (2024)
- Беттер: 1625-1629
- Бөлім: Immunology, Inflammation & Allergy
- URL: https://rjsocmed.com/1381-6128/article/view/645782
- DOI: https://doi.org/10.2174/0113816128295007240507101506
- ID: 645782
Дәйексөз келтіру
Толық мәтін
Авторлар туралы
Priyanka Rani
Department of Pharmaceutical Analysis, ISF College of Pharmacy
Email: info@benthamscience.net
Bibhu Nanda
Department of Pharmaceutical Analysis, ISF College of Pharmacy
Email: info@benthamscience.net
Rohit Bhatia
Department of Pharmaceutical Analysis, ISF College of Pharmacy
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- An L, Ji F, Zhao E, Liu Y, Liu Y. Measuring cell deformation by microfluidics. Front Bioeng Biotechnol 2023; 11: 1214544. doi: 10.3389/fbioe.2023.1214544 PMID: 37434754
- Sun J, Huang X, Chen J, et al. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst (Lond) 2023; 148(20): 4922-38. doi: 10.1039/D3AN01150J PMID: 37743834
- Urbanska M, Muñoz HE, Shaw Bagnall J, et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat Methods 2020; 17(6): 587-93. doi: 10.1038/s41592-020-0818-8 PMID: 32341544
- Chen H, Guo J, Bian F, Zhao Y. Microfluidic technologies for cell deformability cytometry. Smart Medicine 2022; 1(1): e20220001. doi: 10.1002/SMMD.20220001
- Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H. Microfluidic analysis of red blood cell deformability. J Biomech 2014; 47(8): 1767-76. doi: 10.1016/j.jbiomech.2014.03.038 PMID: 24767871
- Han X, Liu Z, Zhao L, et al. Microfluidic cell deformability assay for rapid and efficient kinase screening with the CRISPR‐Cas9 system. Angew Chem Int Ed 2016; 55(30): 8561-5. doi: 10.1002/anie.201601984 PMID: 27258939
- Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen KF. Microfluidics-based assessment of cell deformability. Anal Chem 2012; 84(15): 6438-43. doi: 10.1021/ac300264v PMID: 22746217
- Chen Y, Guo K, Jiang L, Zhu S, Ni Z, Xiang N. Microfluidic deformability cytometry: A review. Talanta 2023; 251: 123815. doi: 10.1016/j.talanta.2022.123815 PMID: 35952505
- Zhao Q, Cui H, Wang Y, Du X. Microfluidic platforms toward rational material fabrication for biomedical applications. Small 2020; 16(9): 1903798. doi: 10.1002/smll.201903798 PMID: 31650698
- Alhmoud H, Alkhaled M, Kaynak BE, Hanay MS. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. Lab Chip 2023; 23(4): 714-26. doi: 10.1039/D2LC00692H PMID: 36472226
- Ledvina V, Klepárník K, Legartová S, Bártová E. A device for investigation of natural cell mobility and deformability. Electrophoresis 2020; 41(13-14): 1238-44. doi: 10.1002/elps.201900357 PMID: 32358820
- Recktenwald SM, Lopes MGM, Peter S, et al. Erysense, a lab-on-a-chip-based point-of-care device to evaluate red blood cell flow properties with multiple clinical applications. Front Physiol 2022; 13: 884690. doi: 10.3389/fphys.2022.884690 PMID: 35574449
- Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-based microfluidics: Applications in pharmaceuticals. Pharmaceuticals 2023; 16(7): 937. doi: 10.3390/ph16070937 PMID: 37513850
- Verma A, Bhattacharyya S. Microfluidics-the state-of-the-art technology for pharmaceutical application. Adv Pharm Bull 2022; 12(4): 700-11. PMID: 36415637
- Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. Nanoscale 2023; 15(32): 13346-58. doi: 10.1039/D3NR02404K PMID: 37526589
- Manz XD, Albers HJ, Symersky P, et al. In vitro microfluidic disease model to study whole blood-endothelial interactions and blood clot dynamics in real-time. J Vis Exp 2020; (159): e61068. PMID: 32510519
- Dusny C, Grünberger A. Microfluidic single-cell analysis in biotechnology: From monitoring towards understanding. Curr Opin Biotechnol 2020; 63: 26-33. doi: 10.1016/j.copbio.2019.11.001 PMID: 31809975
- Hakim M, Khorasheh F, Alemzadeh I, Vossoughi M. A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal Chim Acta 2021; 1186: 339115. doi: 10.1016/j.aca.2021.339115 PMID: 34756251
- Grigorev G, Lebedev A, Wang X, Qian X, Maksimov G, Lin L. Advances in microfluidics for single red blood cell analysis. Biosensors 2023; 13(1): 117. doi: 10.3390/bios13010117 PMID: 36671952
- Su H, Zhang H, Zhang D, Wang H, Wang H. Black phosphorus-loaded inverse opal microspheres for intelligent drug delivery. J Drug Deliv Sci Technol 2024; 92: 105374. doi: 10.1016/j.jddst.2024.105374
- Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: A label-free method for high-throughput cell analysis. Microsyst Nanoeng 2023; 9(1): 116. doi: 10.1038/s41378-023-00562-8 PMID: 37744264
- Ning L. Microfluidic devices for cell separation and sample concentration. Doctoral thesis, Nanyang Technological University, Singapore 2018.
- Hosic S, Murthy SK, Koppes AN. Microfluidic sample preparation for single cell analysis. Anal Chem 2016; 88(1): 354-80. doi: 10.1021/acs.analchem.5b04077 PMID: 26567589
- Ito H, Kaneko M. On-chip cell manipulation and applications to deformability measurements. ROBOMECH J 2020; 7(1): 3. doi: 10.1186/s40648-020-0154-x
- Lin CH, Wang CK, Chen YA, Peng CC, Liao WH, Tung YC. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device. Sci Rep 2016; 6(1): 36425. doi: 10.1038/srep36425 PMID: 27812019
- Yu J, Zhou J, Sutherland A, et al. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu Rev Anal Chem 2014; 7(1): 275-95. doi: 10.1146/annurev-anchem-071213-020323 PMID: 24896308
- Rajawat A, Tripathi S. Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry. Biomed Eng Lett 2020; 10(2): 241-57. doi: 10.1007/s13534-019-00144-6 PMID: 32431954
- Lindsey ML, Mayr M, Gomes AV, et al. Transformative impact of proteomics on cardiovascular health and disease: A scientific statement from the American Heart Association. Circulation 2015; 132(9): 852-72. doi: 10.1161/CIR.0000000000000226 PMID: 26195497
- Pinho D, Carvalho V, Gonçalves IM, Teixeira S, Lima R. Visualization and measurements of blood cells flowing in microfluidic systems and blood rheology: A personalized medicine perspective. J Pers Med 2020; 10(4): 249. doi: 10.3390/jpm10040249 PMID: 33256123
Қосымша файлдар
