Multi-Electron Excitations in Photoemission Spectra of Chalcogenide Semiconductors

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Two types of multielectron effects of X-ray photoemission in chalcogenide semiconductors Cu2SnS3, Cu(In, Ga)Se2, CuGaTe2 have been experimentally studied. The first is interatomic Auger transitions with electron ejection from the inner levels of atoms surrounding copper (Sn, In, Ga), which arise as a result of the decay of the photohole formed on copper atoms during absorption of synchrotron radiation. And the second is the characteristic loss of kinetic energy during direct photoemission from the core–electron levels of tin atoms due to the dynamic Coulomb field of the photohole, the inclusion of which leads to shaking of Sn4d electrons into unoccupied states. The cause of both effects is the extremely non-equilibrium nature of the atom photoionization, which generates an almost instantaneous inclusion of the Coulomb field of the photohole in one of the inner levels of the atom. The surrounding electrons are subjected to a kind of impact and can increase their energy by tens of electron volts. The experiments show that the electrons of the 4d levels are “shaken up” most effectively. Firstly, there are many of them (ten per atom) and, secondly, due to the large centrifugal barrier, these electrons are on the periphery of the atom, as are the unoccupied free states, into which they pass when the photohole field is turned on.

全文:

受限制的访问

作者简介

V. Grebennikov

M.N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vgrebennikov@list.ru
俄罗斯联邦, Ekaterinburg, 620137

T. Kuznetsova

M.N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin

Email: vgrebennikov@list.ru
俄罗斯联邦, Ekaterinburg, 620137; Ekaterinburg, 620002

R. Chumakov

National Research Centre “Kurchatov Institute”

Email: vgrebennikov@list.ru
俄罗斯联邦, Moscow, 123182

参考

  1. Grebennikov V.I., Kuznetsova T.V. // Phys. Stat. Sol. A. 2019. V. 216. P. 1800723. https://doi.org/10.1002/pssa.201800723
  2. Citrin P.H. // J. Electron Spectr. Rel. Phenom. 1974. V. 5. P. 273.
  3. Rao C.N.R., Sarma D. // Phys. Rev. B. 1982. V. 25 № 4. P. 2927. https://doi.org/10.1103/PhysRevB.25.2927
  4. Matthew J.A.D., Komninos Y. // Surf. Sci. 1975. V. 53. P. 716. https://doi.org/10.1016/0039-6028(75)90166-1
  5. Nishigaki S. // Surf. Sci. V. 1983. № 125. P. 762. https://doi.org/10.1016/S0039-6028(83)80058-2
  6. Yin L.I., Tsang T., Coyle G.J., Yin W., Adler I. // Phys. Rev. B. 1982. V. 26. P. 1093. https://doi.org/10.1103/PhysRevB.26.1093
  7. Danger J., Magnan H., Chandesris D., Le Fèvre P., Bourgeois S., Jupille J., Verdini A., Gotter R., Morgante A. // Phys. Rev. B. 2001. V. 64. P. 045110. https://doi.org/10.1103/PhysRevB.64.045110
  8. Wertheim G.K., Rowe J.E., Buchanan D.N.E., Citrin P.H. // Phys. Rev. B. 1995. V. 51. P. 13669. https://doi.org/10.1103/PhysRevB.51.13669
  9. Mahan G.D. // Solid State Phys. 1974. V. 29. P. 75.
  10. Grebennikov V.I., Babanov Yu.A., Sokolov O.B. // Phys. Stat. Sol. B. 1977. V. 79. P. 423.
  11. Grebennikov V.I., Babanov Yu.A., Sokolov O.B. // Phys. Stat. Sol. B. 1977. V. 80. P. 73.
  12. Grebennikov V.I., Sokolov O.B., Turov E.A. // Phys. Stat. Sol. B. 1978. V. 85. P. 127.
  13. Almbladh C.-O., Hedin L. Beyond the One-Electron Model // Handbook on Synchrotron Radiation. V. 1. Ch. 8. / Ed. Koch E.E. Hamburger Synchrotronstrahlungslabor, DESY, Germany, 1983.
  14. Pines D. Elementary Excitations in Solids. CRC Press, 2018.
  15. Кузнецова Т.В., Гребенников В.И., Якушев М.В. // Физика металлов и металловедение. 2018. Т. 119. № 6. С. 550. https://doi.org/10.7868/S0015323018060025
  16. Radzivonchik D.I., Lukoyanov A.V., Grebennikov V.I., Yakushev M.V., Kuznetsova T.V.// J. Alloys Compd. 2019. V. 802. P. 19. https://doi.org/10.1016/j.jallcom.2019.06.062
  17. Mansfield M.W.D., Connerade J.P. // Proc. Roy. Soc. London A. 1976. V. 352. P. 125.
  18. Wolff H.-W., Bruhn R., Radler K., Sonntag B. // Phys.Lett. А. 1976. V. 59. P. 67.
  19. Radtke E.-R. // J. Phys. B. 1979. V. 12. P. L71.
  20. Connerade J.P., Pantelouris M. // J. Phys. B. 1984. V. 17. P. L173.
  21. Giant Resonances in Atoms, Molecules and Solids / Ed. Connerade J.P. et al. New York: Plenum, 1987.
  22. Dzionk Ch., Fiedler W., Lucke M.V., Zimmermann P. // Phys. Rev. Lett. 1989. V. 62. P. 878.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diagram of electronic transitions involving two neighboring atoms: (a– the CuLMV autoionization transition with the formation of two holes at the Cu3p and Sn4d levels and a photoelectron with kinetic energy e; (b— the CuL–SnN–V interatomic transition with finishing holes on the tin atom and in the valence band VB; (c– interatomic Auger transitions starting at the deeper Cu2p1 level of the spin-orbital doublet of copper.

下载 (15KB)
3. Fig. 2. Overview XFE spectrum of the Cu2SnS3 single crystal, photon energy 800 eV.

下载 (13KB)
4. 3. The XFE spectrum of the compound obtained at a photon energy of 956 eV above the excitation threshold of the CuL2.3 levels (1) and at 930 eV below the threshold (2).

下载 (12KB)
5. Fig. 4. Auger-electron spectrum of Cu2SnS3 compound (1) obtained at a photon energy of 950 eV (above the L3 but below the L2 edge of the spin-orbit doublet). The background of inelastic electron scattering is shown by a thin smooth line. For comparison, the corresponding spectrum of pure metallic copper (2) is given.

下载 (14KB)
6. Fig. 5. Auger spectrum of Cu2SnS3 obtained at a photon energy of 956 eV above the excitation edge of CuL2,3 levels (1), and the corresponding spectrum of pure metallic copper (2). The maximum, located 22 eV below the peak of the main auger line CuL3VV, appears as a result of the interatomic transition CuL3–SnN4,5–V. Accordingly, two maxima 23 eV lower than the CuL3M2.3V doublet indicate the CuL3–CuM2.3–SnN4.5 interatomic transition.

下载 (15KB)
7. Fig. 6. Auger decay of the CuL3 photodark in CuGaTe2. The interatomic transitions CuL3–CuM2,3–GaM4.5 and CuL3–GaM4.5–V are visible with an energy 18 eV lower than the energy of the corresponding intraatomic transitions.

下载 (12KB)
8. Fig. 7. X-ray spectra of Sn3d and 4d levels and excitation losses of the Sn4d electron during photoemission from Cu2SnS3.

下载 (2KB)

版权所有 © Russian Academy of Sciences, 2025