Study of Structural Stability of Thin Films of CH3NH3PbI3 Hybrid Perovskite under Ambient Conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Hybrid organic-inorganic perovskite materials are of current interest as promising light-harvesting materials for photovoltaics. However, the main problem of their industrial implementation is the stability in various temperature and humidity conditions. The change in the crystal structure of hybrid perovskite thin films under ambient conditions was studied using X-ray diffraction. In particular, during the degradation of films, the formation of a monohydrate as an intermediate phase was detected. Also, X-ray diffraction data indicated layer-by-layer degradation of the films.

全文:

受限制的访问

作者简介

T. Zelenyak

Joint Institute for Nuclear Research

编辑信件的主要联系方式.
Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980

A. Doroshkevich

Joint Institute for Nuclear Research

Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980

V. Kriger

Joint Institute for Nuclear Research

Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980

T. Vershinina

Joint Institute for Nuclear Research

Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980

T. Tropin

Joint Institute for Nuclear Research

Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980

M. Avdeev

Joint Institute for Nuclear Research; State University Dubna

Email: avd@nf.jinr.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980; Dubna, Moscow Oblast, 141982

参考

  1. Park N.-G., Zhu K. // Nat. Rev. Mater. 2020. V. 5. P. 333. https://doi.org/10.1038/s41578-019-0176-2
  2. Niu G., Li W., Meng F., Wang L., Donga H., Qiuaet Y. // J. Mater. Chem. A. 2014. V. 2. P. 705. https://doi.org/10.1039/C3TA13606J
  3. Niu G., Guo X., Wang L. // J. Mater. Chem. A. 2015. V. 3. P. 8970. https://doi.org/10.1039/C4TA04994B
  4. Ali N., Rauf S., Kong W., Ali S, Wang X., Khesro A., Yang C.P., Zhu B., Wu H. // Renew. Sustain. Energy Rev. 2019. V. 109. P. 160. https://doi.org/10.1016/j.rser.2019.04.022
  5. Krishna B.G., Ghosh D.S., Tiwari S. // Sol. Energy 2021. V. 224. P. 1369. https://doi.org/10.1016/j.solener.2021.07.002
  6. Амасев Д.В., Козюхин С.А., Текшина Е.B., Казанский А.Г. // Учен. записки физ. фак-та Моск. ун-та 2018. № 3. C. 1830501.
  7. Al Mamun A., Ava T.T., Byun H.R., Jeong H.J., Jeong M.S., Nguyen L., Gausin C., Namkoong G. // Phys. Chem. Chem. Phys. 2017. V. 19. № 29. P. 19487. https://doi.org/10.1039/C7CP03106H
  8. Al Mamun A., Mohammed Y., Ava T.T., Namkoong G., Elmustafa A.A. // Mater. Lett. 2018. V. 229. P. 167. https://doi.org/10.1016/j.matlet.2018.06.126
  9. Messegee Z., Al Mamun, A., Ava T.T., Namkoong G., Abdel-Fattah T.M. // Mater. Lett. 2019. V. 236. P. 159. https://doi.org/10.1016/j.matlet.2018.10.064
  10. Im J.H., Kim H.S., Park N.-G. // Appl. Mater. 2014. V. 2. № 8. P. 081510. https://doi.org/10.1063/1.4891275
  11. Zelenyak T., KinevV., Rezepov P., Korolik O., Mazanik A., Tivanov M., Doroshkevich N., Lavysh A., Gevorgyan V., Tameev A., Vannikov A., Turchenko V., Gladyshev P. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 498. № 1. P. 012012. https://doi.org/10.1088/1757-899X/498/1/012012
  12. Cohen B.E., Gamliel S., Etgar L. // Appl. Mater. 2014. V. 2. P. 081502. https://doi.org/10.1063/1.4885548
  13. De Bastiani M., Innocenzo V.D., Stranks S.D., Snaith H.J., Petrozza A. // Appl. Mater. 2014. V. 2. P. 081509. https://doi.org/10.1063/1.4889845
  14. Torres-Martínez D.Y., Millán M., Aguilar B., Navarro O. // Physica B. 2020. V. 585. P. 412081. https://doi.org/10.1016/j.physb.2020.412081
  15. Xie J., Liu Y., Liu J., Lei L., Gao Q., Li J., Yang S. // J. Power Sources. 2015. V. 285. P. 349. https://doi.org/10.1016/j.jpowsour.2015.03.114
  16. Abdelmageed G., Jewell L., Hellier K., Seymour L. // Appl. Phys. Lett. 2016. V. 109. № 23. P. 233905. https://doi.org/10.1063/1.4967840
  17. Glaser T., Müller Ch., Sendner M. et al. // J. Phys. Chem. Lett. 2015. V. 6. № 15. P. 2913. https://doi.org/10.1021/acs.jpclett.5b01309
  18. Li Q., Li J., Zhang S., Yi C., Xu Z. // High Performance Polymers. 2018. V. 30. № 7. P. 847. https://doi.org/10.1177/095400831773239
  19. Da Silva Filho J.M.C., Ermakov V.A., Marques F.C.M. // Sci. Rep. 2018. V. 8. № 1. P. 1. https://doi.org/10.1038/s41598-018-19746-8
  20. Panneerselvam V., Salammal S.T., Chinnakutti K.K., Manidurai P. // Mater. Lett. 2019. V. 241. P. 140. https://doi.org/10.1016/j.matlet.2019.01.069
  21. Mufti N., Laila I.K.R., Fuad A., Taufiq A., Sunaryono // Mater. Today: Proc. 2019. V. 17. P. 1627. https://doi.org/10.1016/j.matpr.2019.06.192
  22. Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. // Inorg. Chem. 2013. V. 52. № 15. P. 9091. https://doi.org/10.1021/ic401215x
  23. Hiraishi J., Tani K., Tamura T. // J. Chem. Phys. 1979. V. 71. № 1. P. 554. https://doi.org/10.1063/1.438138
  24. Yi H., Zhu S., Zhao B., Jin Y., He Z., Chen B. // J. Cryst. Growth. 2007. V. 300. № 2. P. 448. https://doi.org/10.1016/j.jcrysgro.2006.10.226
  25. Del Angel-Olarte C., Moreno-García H., Palestino G. // Thin Solid Films. 2021. V. 717. P. 138438. https://doi.org/10.1016/j.tsf.2020.138438
  26. Poglitsch A., Weber D. // J. Chem. Phys. 1987. V. 87. P. 6373. https://doi.org/10.1063/1.453467
  27. Hao F., Stoumpos C.C., Liu Z., Liu Z., Chang R.P.H., Kanatzidis M.G. // J. Am. Chem. Soc. 2014. V. 136. P. 16411. https://doi.org/10.1021/ja509245x
  28. Christians J.A., Herrera M.P.A., Kamat P.V. // J. Am. Chem. Soc. 2015. V. 137. P. 1530. https://doi.org/10.1021/ja511132a
  29. Dhamaniya B.P., Chhillar P., Roose B., Dutta V., Pathak S.K. // ACS Appl. Mater. Int. 2019. V. 11. P. 22228. https://doi.org/10.1021/acsami.9b00831
  30. Li D., Bretschneider S.A., Bergmann V.W., Hermes I.M., Mars J., Klasen A., Lu H., Tremel W., Mezger M., Butt H.-J., Weber S.A.L., Berger R. // J. Phys. Chem. C. 2016. V. 120. P. 6363. https://doi.org/10.1021/acs.jpcc.6b00335
  31. Leguy A.M.A., Hu Y., Campoy-Quiles M., Alonso M.I., Weber O.J., Azarhoosh P., Van Schilfgaarde M., Weller M.T., Bein T., Nelson J., Docampo P., Barnes P.R.F. // Chem. Mater. 2015. V. 27. P. 3397. https://doi.org/10.1021/acs.chemmater.5b00660
  32. Imler G.H., Li X., Xu B., Dobereiner G.E., Dai H.-L., Rao Y., Wayland B.B. // Chem. Comm. 2015. V. 51. № 56. P. 11290. https://doi.org/10.1039/C5CC03741G
  33. Hea Y., Zhua S., Zhao B., Jin Y., He Z., Chen B. // J. Cryst. Growth 2007. V. 300. P. 448. https://doi.org/10.1016/j.jcrysgro.2006.10.226
  34. Fan Z., Xiao H., Wang Y., Zhao Z., Lin Z., Cheng H.-C., Lee S.-J., Wang G., Feng Z., Goddard III W.A., Huang Y., Duan X. // Joule 2017. V. 1. № 3. P. 548. https://doi.org/10.1016/j.joule.2017.08.005
  35. Masaki S., Masato K., Tetsuhiko M., Sugita T., Fujiseki T., Hara S., Kadowaki H., Murata D., Chikamatsu M., Fujiwara H. // J. Appl. Phys. 2016. V. 119. P. 115501. https://doi.org/10.1063/1.4943638

补充文件

附件文件
动作
1. JATS XML
2. 1. Schematic representation of the one-stage synthesis of a CH3NH3PbI3 perovskite film (a) and the cell architecture of a perovskite solar cell (b).

下载 (31KB)
3. Fig. 2. Absorption spectra of the UV appearance of the CH3NH3PbI3 film at different exposure times under normal conditions. The insert shows the dependence of the absorption coefficient a on the photon energy in the vicinity of the energy corresponding to the band gap; a was estimated according to [14] as a = 2.302A/d, where d is the calculated film thickness (d = 600 nm).

下载 (37KB)
4. Fig. 3. FTIR spectra of a CH3NH3PbI3 film on a glass/ITO/TiO2/mp-TiO2 substrate at different exposure times under normal conditions.

下载 (35KB)
5. 4. X-ray diffractogram of the initial CH3NH3PbI3 perovskite film with a tetragonal structure (pr. gr. P4mm (No. 99)). The vertical strokes below the graph indicate intense peaks of CH3NH3PbI3 from the PDF database (ICDD, 2015 98-025-0735) [22].

下载 (11KB)
6. 5. X-ray diffractograms of a CH3NH3PbI3 film at different exposure times under normal conditions at the initial stage (a) and the degradation stage (b). The arrow on the diffractogram at 72 h marks the peak of the intermediate phase of CH3NH3PbI3·H2O monohydrate.

下载 (6KB)

版权所有 © Russian Academy of Sciences, 2025