Peculiarities of the Interstellar Dust Distribution in the Heliosphere Induced by the Time-Dependent Magnetic Field

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Interstellar dust enters the heliosphere due to the relative motion of the Sun and the Local Interstellar Cloud, which contains the Sun. The dynamics of interstellar dust particles is governed mainly by the electromagnetic force. The direction of this force depends on the polarity of the heliospheric magnetic field. In turn, polarity is a function of position and time and depends on the orientation of the solar magnetic dipole axis relative to the solar rotation axis. Previously it was shown that for the case when the magnetic dipole axis coincides with the solar rotation axis, the electromagnetic force acting on dust particles is directed towards the solar equatorial plane in both the northern and southern solar hemispheres. As a result, under the influence of such a force, the distribution of interstellar dust becomes highly inhomogeneous and, in particular, thin regions of increased number density (caustics) are formed. The goal of this work is to study the nature of caustics for a more realistic time-dependent model, when it is assumed that the magnetic dipole axis rotates relative to the solar rotation axis with a period of 22 years in accordance with the 22-year solar cycle. In addition, the magnetic dipole axis rotates due to the rotation of the Sun with a period of 25 days. To calculate the dust number density, the Lagrangian Osiptsov method is used. The shape and evolution of the resulting caustics are examined and the physical mechanisms of their origin are discussed. It is shown that, when taking into account time-dependent effects, caustics appear only in certain phases of the 22-year solar cycle, and then disappear.

全文:

受限制的访问

作者简介

E. Godenko

Space Research Institute of RAS; Ishlinsky Institute for Problems in Mechanics of RAS; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: godenko.egor@yandex.ru
俄罗斯联邦, Moscow, 117485; Moscow, 119526; Moscow, 119991

V. Izmodenov

Space Research Institute of RAS; Ishlinsky Institute for Problems in Mechanics of RAS; Lomonosov Moscow State University

Email: godenko.egor@yandex.ru
俄罗斯联邦, Moscow, 117485; Moscow, 119526; Moscow, 119991

参考

  1. Baranov V.B., Izmodenov V.V. // Fluid Dynamics. 2006. V. 41. P. 689.
  2. Griin E., Zook H.A., Baguhl M., Balogh A., Bame S.J., Fechtig H., Forsyth R., Hanner M.S., Horanyi M., Kissel J., Lindblad B.-A., Linkert D., Linkert G., Mann I., McDonnell J. A. M., Morfill G.E., Phillips J.L., Polanskey C., Schwehm G., Siddique N., Staubach P., Svestka J., Taylor A. // Nature. 1993. V. 362. P. 428.
  3. Wang S., Li A., Jiang B.W. // The Astrophysical Journal. 2015. V. 811. P. 38.
  4. Altobelli N., Postberg F., Fiege K., Trieloff M., Kimura H., Sterken V.J., Hsu H.W., Hillier J., Khawaja N., Moragas-Klostermeyer G., Blum J., Burton M., Srama R., Kempf S., Grün E. // Science. 2016. V. 352. P. 312.
  5. Godenko E.A., Izmodenov V.V. // Advances in Space Research. 2023. V. 72. P. 5142.
  6. Smith E.J. // Journal of Geophysical Research. 2001. V. 106. P. 15819.
  7. Jokipii J.R., Thomas B. // The Astrophysical Journal. 1981. V. 243. P. 1115.
  8. Hoeksema J.T. // Space Science Reviews. 1995. V. 72. P. 137.
  9. Mishchenko A.V., Godenko E.A., Izmodenov V.V. // MNRAS. 2020. V. 491. P. 2808.
  10. Godenko E.A., Izmodenov V.V. // Astronomy Letters. 2021. V. 47. P. 50.
  11. Godenko E.A., Izmodenov V.V. // Fluid Dynamics. 2023. V. 58. P. 274.
  12. Osiptsov A.N. // Astrophysics and Space Science. 2000. V. 274. P. 377.
  13. Osiptsov A.N. // Fluid Dynamics. 2024. V. 59. P. 1.
  14. Landgraf M. // Journal of Geophysical Research. 2000. V. 105. P. 10303.
  15. Sterken V.J., Altobelli N., Kempf S., Schwehm G., Srama R., Grün E. // Astronomy and Astrophysics. 2012. V. 538. P. A102.
  16. Slavin J.D., Frisch P.C., Muller H.-R., Heerikhuisen J., Pogorelov N.V., Reach W.T., Zank G. // The Astrophysical Journal. 2012. V. 760. P. 46.
  17. Alexashov D.B., Katushkina O.A., Izmodenov V.V., Akaev P.S. // MNRAS. 2016. V. 458. P. 2553.
  18. Strub P., Sterken V.J., Soja R., Krüger H., Grün E., Srama R. // Astronomy and Astrophysics. 2019. V. 621. P. A54.
  19. Kempf S., Srama R., Altobelli N., Auer S., Tschernjawski V., Bradley J., Burton M.E., Helfert S., Johnson T.V., Krüger H., Moragas-Klostermeyer G., Grün E. // Icarus. 2004. V. 171. P. 317.
  20. Weingartner J.C., Draine B.T. // The Astrophysical Journal Supplement Series. 2001. V. 134. P. 263.
  21. Parker E.N. // The Astrophysical Journal. 1958. V. 128. P. 664.
  22. Kimura H., Mann I. // Meteroids 1998 edited by Baggaley W.J. and Porubcan V. 1999. P. 283.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1: Schematic representation of the interaction of the solar wind with the local interstellar medium. The black arrows correspond to the plasma current lines of the solar wind, and the red arrows correspond to the plasma current lines of the local interstellar medium. The blue arrows show the direction of movement of dust particles in the undisturbed interstellar medium. TS is the heliospheric shock wave, HP is the heliopause, BS is the head shock wave.

下载 (226KB)
3. Fig. 2. Trajectories of dust particles for a stationary focusing current layer. The coordinates of the dust grains on the plane y0 = 100 AU are set uniformly from the interval z0 E [-5 AU, 5 AU]. Here and further, for clarity, the trajectories in the plane x = 0 are considered. The color shows the dust concentration calculated using the Lagrangian Osiptsov method. Particle size a = 200 nm.

下载 (239KB)
4. Fig. 3. Trajectories of two particles with initial coordinates z0 = 1 AU and z0 = 2 AU for a stationary focusing current layer. The black lines correspond to the value of the polarity along the trajectory (solid line for a particle with z0 = 1 AU, dotted line for a particle with z0 = 2 AU). Particle size a = 200 nm.

下载 (109KB)
5. 4. The shape of the unsteady current layer in the heliosphere for four time points: t = 1 year, 4 years, 8 years, 12 years. The line of intersection of the red and blue areas corresponds to the current layer. The red dots correspond to the positive polarity, and the blue dots correspond to the negative polarity.

下载 (654KB)
6. Fig. 5. Trajectories of dust particles in the case of an unsteady current layer for various values of the parameter t0 = {0, 3, 7, 10, 14, 18} years old. The coordinates of the dust particles on the plane y0 = y0(t0) are set uniformly from the interval z0 ∈ [-5 AU, 5 AU]. The particle size a = 200 nm.

下载 (1MB)
7. Fig. 6. The trajectories of dust particles on an enlarged scale for the case t0 = 7 years, as in Fig. 5b.

下载 (375KB)
8. 7. The trajectory of a dust particle with Lagrangian coordinates z0 = 0.6 AU, t0 = 7 years in the case of an unsteady current layer. The black line corresponds to the polarity of the magnetic field along this trajectory. Particle size a = 200 nm.

下载 (146KB)

版权所有 © Russian Academy of Sciences, 2024