Neuroprotective effects of local surface hypothermia during endothelin-1-induced focal ischemia in rat cerebral cortex. I. Electrophysiological analysis
- 作者: Zakirova G.F.1, Chernova К.A.1, Khazipov R.N.1,2, Zakharov А.V.1,3
-
隶属关系:
- Kazan Federal University
- Aix-Marseille University, INMED, IINSERM
- Department of Normal Physiology, Kazan State Medical University
- 期: 卷 111, 编号 1 (2025)
- 页面: 78-94
- 栏目: EXPERIMENTAL ARTICLES
- URL: https://rjsocmed.com/0869-8139/article/view/682952
- DOI: https://doi.org/10.31857/S0869813925010057
- EDN: https://elibrary.ru/UKIWSC
- ID: 682952
如何引用文章
详细
Local therapeutic hypothermia (LTH) is one of the most promising methods for neuroprotection in cerebral ischemia. However, the efficacy of superficial LTH at clinically relevant delays after the onset of ischemic attack remains poorly understood. In the present study, we investigated the neuroprotective effects of LTH in a model of focal ischemia induced by epipial application of the vasoconstrictor Endothelin-1 in the somatosensory cortex region of the rat brain. The neuroprotective effects of LTH were assessed by the level of spontaneous and sensory-evoked electrical activity at different cortical depths using linear electrode arrays. We found that cooling the cortical surface to 28°C using a Peltier element starting from 0, 10, and 60 minutes after Endothelin-1 application caused a significant reduction in the degree of suppression of electrical activity in the ischemic focus formed in the cerebral cortex 3 hours after Endothelin-1 application. The neuroprotective effects of LTH were manifested by a higher level of spontaneous multinit activity, higher power of the local field potential oscillations in theta, alpha and beta bands, as well in a greater amplitude and higher multiunit activity during sensory evoked responses. The neuroprotective effects of LTH were inversely correlated with the delay of LTH onset and were most pronounced with LTH initiated with minimal (0 and 10 minutes) delay after Endothelin-1 application. We also found that only LTH initiated simultaneously with Endothelin-1 application delayed the onsets of spreading depolarization waves and that LTH did not affect the amplitude of negative ultraslow potentials evoked by Endothelin-1. Taken together, the results of the electrophysiological analysis suggest neuroprotective effects of surface LTH, which are particularly pronounced when LTH is minimally delayed from the onset of the ischemic insult in the Endothelin-1-induced focal ischemia model.
全文:

作者简介
G. Zakirova
Kazan Federal University
Email: roustem.khazipov@inserm.fr
俄罗斯联邦, Kazan
К. Chernova
Kazan Federal University
Email: roustem.khazipov@inserm.fr
俄罗斯联邦, Kazan
R. Khazipov
Kazan Federal University; Aix-Marseille University, INMED, IINSERM
编辑信件的主要联系方式.
Email: roustem.khazipov@inserm.fr
俄罗斯联邦, Kazan; Marseille, France
А. Zakharov
Kazan Federal University; Department of Normal Physiology, Kazan State Medical University
Email: roustem.khazipov@inserm.fr
俄罗斯联邦, Kazan; Kazan
参考
- Shamalov NA, Stakhovskaya LV, Ivanova GE, Shekhovtsova KV, Lee SC, Skvortsova VI (2013) Results of the federal anti-stroke program in the Russian Federation. Cerebrovasc Diseas 35: 88–88.
- Lapchak PA, Zhang JH (2017) The high cost of stroke and stroke cytoprotection research. Translat Stroke Res 8: 307–317. https://doi.org/10.1007/s12975-016-0518-y
- Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, Mcmullan PW, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H, Amer Heart Assoc Stroke C, Council Cardiovasc N, Council Peripheral Vasc D, Council Clinical C (2013) Guidelines for the early management of patients with acute ischemic stroke a guideline for healthcare professionals from the American Heart Association. American Stroke Association. Stroke 44: 870–947. https://doi.org/10.1161/STR.0b013e318284056a
- Ginsberg MD (2016) Expanding the concept of neuroprotection for acute ischemic stroke: The pivotal roles of reperfusion and the collateral circulation. Progr Neurobiol 145: 46–77. https://doi.org/10.1016/j.pneurobio.2016.09.002
- Al-Ajlan FS, Alkhiri A, Alamri AF, Alghamdi BA, Almaghrabi AA, Alharbi AR, Alansari N, Almilibari AZ, Hussain MS, Audebert HJ, Grotta JC, Shuaib A, Saver JL, Alhazzani A (2024) Golden hour intravenous thrombolysis for acute ischemic stroke: a systematic review and meta-analysis. Ann Neurol 96: 582–590. https://doi.org/10.1002/ana.27007
- Saver JL, Smith EE, Fonarow GC, Reeves MJ, Zhao X, Olson DM, Schwamm LH, Investig GW-SSC (2010) The "Golden hour" and acute brain ischemia presenting features and lytic therapy in > 30 000 patients arriving within 60 minutes of stroke onset. Stroke 41: 1431–1439. https://doi.org/10.1161/STROKEAHA.110.583815
- Di Biase L, Bonura A, Caminiti ML, Pecoraro PM, Di Lazzaro V (2022) Neurophysiology tools to lower the stroke onset to treatment time during the golden hour: microwaves, bioelectrical impedance and near infrared spectroscopy. Ann Med 54: 2658–2671. https://doi.org/10.1080/07853890.2022.2124448
- Reeves MJ, Fonarow GC, Smith EE, Sheth KN, Messe SR, Schwamm LH (2024) Twenty years of get with The Guidelines-Stroke: celebrating past successes, lessons learned, and future challenges. Stroke 55: 1689–1698. https://doi.org/10.1161/STROKEAHA.124.046527
- Kurisu K, Yenari MA (2017) Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology 134: 302–309. https://doi.org/10.1016/j.neuropharm.2017.08.025
- Polderman KH (2009) Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 37(7): 186–202. https://doi.org/10.1097/CCM.0b013e3181aa5241
- Wassink G, Davidson JO, Dhillon SK, Zhou K, Bennet L, Thoresen M, Gunn AJ (2019) Therapeutic hypothermia in neonatal hypoxic-ischemic encephalopathy. Curr Neurol Neurosci Rep 19(2): 2. https://doi.org/10.1007/s11910-019-0916-0
- Sekhon MS, Ainslie PN, Griesdale DE (2017) Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care 21(90): 1–10. https://doi.org/10.1186/s13054-017-1670-9
- Бутров АВ, Торосян БД, Чебоксаров ДВ, Махмутова ГР (2019) Терапевтическая гипотермия при поражениях головного мозга различного генеза. Вестн интенсивн терапии им АИ Салтанова 2: 75–81. [Butrov AV, Torosyan BD, Cheboksarov DV, Makhmutova GR (2019) Therapeutic hypothermia in treatment of different cerebral injuries. Ann Сritical Care 2: 75–81. (In Russ)]. https://doi.org/10.21320/1818-474X-2019-2-75-81
- Sun YJ, Zhang ZY, Fan B, Li GY (2019) Neuroprotection by therapeutic hypothermia. Front Neurosci 13: 586. https://doi.org/10.3389/fnins.2019.00586.
- Cattaneo G, Meckel S (2019) Review of selective brain hypothermia in acute ischemic stroke therapy using an intracarotid, closed-loop cooling catheter. Brain Circ 5(4): 211–217. https://doi.org/10.4103/bc.bc_54_19.
- Zhao J, Mu H, Liu L, Jiang X, Wu D, Shi Y (2018) Transient selective brain cooling confers neurovascular and functional protection from acute to chronic stages of ischemia/reperfusion brain injury. J Cereb Blood Flow Metab 39: 1215–1231. https://doi.org/10.1177/0271678X18808174
- Assis FR, Narasimhan B, Ziai W, Tandri H (2019) From systemic to selective brain cooling – Methods in review. Brain Circ 5: 179–186. https://doi.org/10.4103/bc.bc_23_19
- Nasretdinov A, Evstifeev A, Vinokurova D, Burkhanova-Zakirova G, Chernova K, Churina Z, Khazipov R (2021) Full-Band EEG recordings using hybrid AC/DC-divider filters. eNeuro 8(4): ENEURO.0246-21.2021. https://doi.org/10.1523/ENEURO.0246-21.2021
- Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J 2: 691–708. https://doi.org/10.1016/S0006-3495(99)77236-X
- Захаров АВ, Захарова ЮП (2023) Eview – программа с открытым исходным кодом для преобразования и визуализации многоканальных электрофизиологических сигналов. Гены и клетки 18(4): 323–330. [Zakharov AV, Zakharova JP (2023) Eview – an open-source program for conversion and visualisation of multichannel electrophysiological signals. Genes and Cells 18(4): 323–330. (In Russ)].
- Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT (2006) Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J Neurosci Methods 154(1–2): 116–133. https://doi.org/10.1016/j.jneumeth.2005.12.005
- Nasretdinov A, Lotfullina N, Vinokurova D, Lebedeva J, Burkhanova G, Chernova K, Zakharov A, Khazipov R (2017) Direct current coupled recordings of Cortical Spreading Depression using silicone probes. Front Cell Neurosci 11: 408. https://doi.org/10.3389/fncel.2017.00408
- Sheroziya M, Timofeev I (2015) Moderate cortical cooling eliminates thalamocortical silent states during slow oscillation. J Neurosci 35: 13006–13019. https://doi.org/10.1523/JNEUROSCI.1359-15.2015
- Burkhanova G, Chernova K, Khazipov R, Sheroziya M (2020) Effects of cortical cooling on activity across layers of the rat barrel cortex. Front Syst Neurosci 14: 52. https://doi.org/10.3389/fnsys.2020.00052
- Vinokurova D, Zakharov A, Chernova K, Burkhanova-Zakirova G, Horst V, Lemale CL, Dreier JP, Khazipov R (2022) Depth-profile of impairments in endothelin-1 – induced focal cortical ischemia. J Cereb Blood Flow Metab 42(10): 1944–1960. https://doi.org/10.1177/0271678X221107422
- Juzekaeva E, Gainutdinov A, Mukhtarov M, Khazipov R (2020) Reappraisal of anoxic spreading depolarization as a terminal event during oxygen-glucose deprivation in brain slices in vitro. Sci Rep 10(1): 18970. https://doi.org/10.1038/s41598-020-75975-w
- Vinokurova D, Zakharov AV, Lebedeva J, Burkhanova GF, Chernova KA, Lotfullina N, Khazipov R, Valeeva G (2018) Pharmacodynamics of the glutamate receptor antagonists in the rat barrel cortex. Front Pharmacol 9: 698. https://doi.org/10.3389/fphar.2018.00698
- Dreier JP, Major S, Lemale CL, Kola V, Reiffurth C, Schoknecht K, Hecht N, Hartings JA, Woitzik J (2019) Correlates of spreading depolarization, spreading depression, and negative ultraslow potential in epidural versus subdural electrocorticography. Front Neurosci 13: 1–20. https://doi.org/10.3389/fnins.2019.00373
- Mingazov B, Vinokurova D, Zakharov A, Khazipov R (2023) Comparative Study of Terminal Cortical Potentials Using Iridium and Ag/AgCl Electrodes. Int J Mol Sci 24(13): 10769. https://doi.org/10.3390/ijms241310769
- Major S, Gajovic-Eichelmann N, Woitzik J, Dreier JP (2021) Oxygen-Induced and pH-Induced Direct Current Artifacts on Invasive Platinum/Iridium Electrodes for Electrocorticography. Neurocrit Care 35(Suppl 2): 146–159. https://doi.org/10.1007/s12028-021-01358-2
补充文件
