Влияние комбинации факторов TGFβ+MCSF+Холестерин на количество и функциональную активность микроглии в клеточных культурах гиппокампа крысы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Клетки микроглии в мозге рассматриваются в качестве резидентных макрофагов, обладающих рядом функциональных и физиологических характеристик, свойственных для указанных иммунных клеток. Микроглия вовлечена в реализацию процессов нейровоспаления различной этиологии, в ходе которых она подвержена фенотипическим изменениям. В нейрон-глиальных культурах для клеток микроглии свойственна низкая пролиферативная способность ввиду отсутствия необходимых ростовых факторов. В рамках данного исследования мы оценили влияние комбинации критических для пролиферации микроглии соединений, таких как трансформирующий фактор роста бета (TGFβ), макрофагальный колониестимулирующий фактор (MCSF) и холестерин, на количество и функциональную активность клеток микроглии в культурах гиппокампа новорожденных крыс. Нами было установлено, что комбинация TGFβ+MCSF+холестерин увеличивала количество клеток микроглии в культурах более чем в два раза. Методом ПЦР-анализа в реальном времени было показано, что воздействие провоспалительного агента липополисахарида (ЛПС) на культуры, выращенные с использованием этой комбинации факторов, приводило к усилению экспрессии генов, кодирующих ассоциированные с воспалением белки, такие как IL-1β, TNFα, STAT3. Кроме того, ЛПС усиливал экспрессию гена, кодирующего белок виментин, выступающий в качестве ситуативного маркера реактивной микроглии. Наряду с этим инкубация с ЛПС приводила к увеличению клеточной гибели в культурах. В случае воздействия эпизода гипоксии отмечалось подавление экспрессии генов, кодирующих указанные провоспалительные белки, при этом усиление клеточной гибели по сравнению с контролем было незначительным. ЛПС, а также хемотаксический формилированный пептид (активатор иммунных клеток), вызывали в клетках микроглии усиление продукции супероксид-аниона и повышение внутриклеточной концентрации Ca2+. Таким образом, описанные эффекты ЛПС могут свидетельствовать в пользу того, что комбинация TGFβ+MCSF+холестерин, вносимая в среду для культивирования, способствует сохранению и пролиферации в нейрон-глиальных культурах клеток функционально активной микроглии.

Об авторах

В. Н. Мальцева

Институт биофизики клетки РАН – обособленное подразделение ФИЦ ПНЦБИ РАН

Пущино, 142290 Россия

И. А. Тумозов

Институт биофизики клетки РАН – обособленное подразделение ФИЦ ПНЦБИ РАН

Пущино, 142290 Россия

Н. А. Рындина

Институт биофизики клетки РАН – обособленное подразделение ФИЦ ПНЦБИ РАН; Тульский государственный университет

Пущино, 142290 Россия; Тула, 300012 Россия

А. М. Косенков

Институт биофизики клетки РАН – обособленное подразделение ФИЦ ПНЦБИ РАН

Пущино, 142290 Россия

С. Г. Гайдин

Институт биофизики клетки РАН – обособленное подразделение ФИЦ ПНЦБИ РАН

Email: ser-gajdin@yandex.ru
Пущино, 142290 Россия

Список литературы

  1. Bachiller S., Jiménez-Ferrer I., Paulus A., Yang Y., Swanberg M., Deierborg T., Boza-Serrano A. 2018. Microglia in neurological diseases. Front. Cell Neurosci. 12, 488.
  2. Li Q., Barres B.A. 2018. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18 (4), 225–242.
  3. Nagayach A., Patro N., Patro I. 2016. Microglia in the physiology and pathology of brain. 86 (4), 781–794.
  4. Timmerman R., Burm S.M., Bajramovic J.J. 2018. An overview of in vitro methods to study microglia. Front. Cell Neurosci. 12, 242.
  5. Cakir B., Kiral F.R., Park I.-H. 2022. Advanced in vitro models. Neuron. 110 (21), 3444–3457.
  6. Goshi N., Morgan R.K., Lein P.J., Seker E. 2020. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J. Neuroinflammation. 17 (1), 155.
  7. Kim H., Le B., Goshi N., Zhu K., Grodzki A.C., Lein P.J., Zhao M., Seker E. 2024. Primary cortical cell tri-culture to study effects of amyloid-β on microglia function and neuroinflammatory response. J. Alzheimers Dis. 102 (3), 730–741.
  8. Gaidin S.G., Kosenkov A.M., Zinchenko V.P., Kairat B.K., Malibayeva A.E., Tuleukhanov S.T. 2025. Identification of neurons containing calcium-permeable AMPA and kainate receptors using Ca2+ imaging. Bio Protoc. 15 (3), e5199.
  9. Maiorov S.A., Laryushkin D.P., Kritskaya K.A., Zinchenko V.P., Gaidin S.G., Kosenkov A.M. 2024. The role of ion channels and intracellular signaling cascades in the inhibitory action of WIN 55,212-2 upon hyperexcitation. Brain Sci. 14 (7), 668.
  10. Maiorov S.A., Kairat B.K., Berezhnov A.V., Zinchenko V.P., Gaidin S.G., Kosenkov A.M. 2024. Peculiarities of ion homeostasis in neurons containing calcium-permeable AMPA receptors. Arch. Biochem. Biophys. 754, 109951.
  11. Gaidin S.G., Maiorov S.A., Laryushkin D.P., Zinchenko V.P., Kosenkov A.M. 2023. A novel approach for vital visualization and studying of neurons containing Ca2+ -permeable AMPA receptors. J. Neurochem. 164 (5), 583–597.
  12. Kim B., Fukuda M., Lee J.-Y., Su D., Sanu S., Silvin A., Khoo A.T.T., Kwon T., Liu X., Chi W., Liu X., Choi S., Wan D.S.Y., Park S.-J., Kim J.-S., Ginhoux F., Je H.S., Chang Y.-T. 2019. Visualizing microglia with a fluorescence turn-on Ugt1a7c substrate. Angew. Chem. Int. Ed. Engl. 58 (24), 7972–7976.
  13. Lelios I., Cansever D., Utz S.G., Mildenberger W., Stifter S.A., Greter M. 2020. Emerging roles of IL-34 in health and disease. J. Exp. Med. 217 (3), e20190290.
  14. Ransohoff R.M. 2016. A polarizing question. Nat. Neurosci. 19 (8), 987–991.
  15. Gaidin S.G., Zinchenko V.P., Sergeev A.I., Teplov I.Y., Mal'tseva V.N., Kosenkov A.M. 2020. Activation of alpha-2 adrenergic receptors stimulates GABA release by astrocytes. Glia. 68 (6), 1114–1130.
  16. Cuní-López C., Stewart R., Quek H., White A.R. 2022. Recent advances in microglia modelling to address translational outcomes in neurodegenerative diseases. Cells. 11 (10), 1662.
  17. Spittau B., Dokalis N., Prinz M. 2020. The role of TGFβ signaling in microglia maturation and activation. Trends Immunol. 41 (9), 836–848.
  18. Elmore M.R.P., Najafi A.R., Koike M.A., Dagher N.N., Spangenberg E.E., Rice R.A., Kitazawa M., Matusow B., Nguyen H., West B.L., Green K.N. 2014. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 82 (2), 380–397.
  19. Stanley E.R., Biundo F., Gökhan Ş., Chitu V. 2023. Differential regulation of microglial states by colony stimulating factors. Front. Cell Neurosci. 17, 1275935.
  20. Mouihate A. 2014. TLR4-mediated brain inflammation halts neurogenesis. Front. Cell Neurosci. 8, 146.
  21. Nimmervoll B., White R., Yang J.-W., An S., Henn C., Sun J.-J., Luhmann H.J. 2013. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. Cereb. Cortex. 23 (7), 1742–1755.
  22. Zheng Z.V., Chen J., Lyu H., Lam S.Y.E., Lu G., Chan W.Y., Wong G.K.C. 2022. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc. Neurol. 7 (1), 62–70.
  23. Yun J.-H., Lee D.-H., Jeong H.-S., Kim H.S., Ye S.-K., Cho C.-H. 2021. STAT3 activation in microglia exacerbates hippocampal neuronal apoptosis in diabetic brains. J. Cell Physiol. 236 (10), 7058–7070.
  24. Takamori Y., Mori T., Wakabayashi T., Nagasaka Y., Matsuzaki T., Yamada H. 2009. Nestin-positive microglia in adult rat cerebral cortex. Brain Res. 1270, 10–18.
  25. Krishnasamy S., Weng Y.-C., Thammisetty S.S., Phaneuf D., Lalancette-Hebert M., Kriz J. 2017. Molecular imaging of nestin in neuroinflammatory conditions reveals marked signal induction in activated microglia. J. Neuroinflammation. 14 (1), 45.
  26. Blaschke S.J., Demir S., König A., Abraham J.-A., Vay S.U., Rabenstein M., Olschewski D.N., Hoffmann C., Hoffmann M., Hersch N., Merkel R., Hoffmann B., Schroeter M., Fink G.R., Rueger M.A. 2020. Substrate elasticity exerts functional effects on primary microglia. Front. Cell Neurosci. 14, 590500.
  27. Jiang S.X., Slinn J., Aylsworth A., Hou S.T. 2012. Vimentin participates in microglia activation and neurotoxicity in cerebral ischemia. J. Neurochem. 122 (4), 764–774.
  28. Bernal A., Arranz L. 2018. Nestin-expressing progenitor cells. Cell Mol. Life Sci. 75 (12), 2177–2195.
  29. Bott C.J., Johnson C.G., Yap C.C., Dwyer N.D., Litwa K.A., Winckler B. 2019. Nestin in immature embryonic neurons affects axon growth cone morphology and Semaphorin3a sensitivity. Mol. Biol. Cell. 30 (10), 1214–1229.
  30. Boyne L.J., Fischer I., Shea T.B. 1996. Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. Int. J. Dev. Neurosci. 14 (6), 739–748.
  31. Gao J., Su G., Liu J., Shen M., Zhang Z., Wang M. 2024. Formyl peptide receptors in the microglial activation. FASEB J. 38 (21), e70151.
  32. Simpson D.S.A., Oliver P.L. 2020. ROS Generation in Microglia. Antioxidants (Basel). 9 (8), 743.
  33. Korvers L., Andrade Costa A. de, Mersch M., Matyash V., Kettenmann H., Semtner M. 2016. Spontaneous Ca2+ transients in mouse microglia. Cell Calcium. 60 (6), 396–406.
  34. Zhang L., Wei W., Ai X., Kilic E., Hermann D.M., Venkataramani V., Bähr M., Doeppner T.R. 2021. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. Cell Death. Dis. 12 (11), 1068.
  35. Koellhoffer E.C., d’Aigle J., McCullough L.D. 2017. Abstract WP101: Hypoxia drives anti-inflammatory polarization of microglia in ischemic stroke. Stroke. 48 (suppl 1), AWP101.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025