Активизация пируватдегидрогеназного комплекса и ингибирование цикла Кребса и дыхания митохондрий избытком пирувата

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В экспериментах на изолированных митохондриях печени крыс показано, что пируват (10–30 мМ) в присутствии L-глутамата вызывает концентрационно-зависимое ингибирование дыхания, активированного ADP. Дыхание реактивируется 3 мМ L-малата. Оба эффекта воспроизводятся в присутствии D,L-ацетилкарнитина (АсCar), что указывает на важную роль ацетилКоА (AcCoA) в регуляции реакций цикла Кребса. При окислении пирувата скорость дыхания снижается в течение нескольких сотен секунд. Эффект воспроизводится в присутствии дихлорацетата (DCA), ингибитора киназы пируватдегидрогеназы (PDK) и не наблюдается при избытке АсCar, что указывает на дефосфорилирование пируватдегидрогеназы (PDH) при ингибировании PDK пируватом (+ADP) или DCA. Эффекты пирувата и АсСar зависят от времени преинкубации митохондрий в состоянии 2. Эксперименты на замороженных/размороженных митохондриях показывают, что преинкубация митохондрий с пируватом восстанавливает активность PDH и подавляет активность α-кетоглутаратдегидрогеназы (α-KGDH), регистрируемых по флуоресценции NADH. Таким образом, в качестве возможного механизма ингибирования дыхания пируватом можно предположить комбинированный механизм, сочетающий 1) аллостерическое ингибирование цитратсинтазы избытком AcCoA при низких концентрациях оксалоацетата и α-KGDH с возможным участием ацетоацетилКоА; 2) медленное ацетилирование α-KGDH и других ферментов цикла избытком AcCoA при медленной реактивации PDH пируватом.

Об авторах

В. В. Дынник

Институт теоретической и экспериментальной биофизики РАН

Email: dynnik@rambler.ru
Пущино, 142290 Россия

Е. В. Гришина

Институт теоретической и экспериментальной биофизики РАН

Пущино, 142290 Россия

Н. И. Федотчева

Институт теоретической и экспериментальной биофизики РАН

Пущино, 142290 Россия

Список литературы

  1. LaNoue K.F., Bryla J., Williamson J.R. 1972. Feedback interactions in the control of citric acid cycle activity in rat heart mitochondria. J. Biol. Chem. 247 (3), 667–679. https://doi.org/10.1016/S0021–9258(19)45660–3
  2. Hansford R.G., Johnson R.N. 1975. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. J. Biol. Chem. 250 (21), 8361–8375. https://doi.org/10.1016/S0021–9258(19)40767–9
  3. Ashour B., Hansford R.G. 1983. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria. Biochem. J. 214 (3), 725–736. https://doi.org/10.1042/bj2140725
  4. Williamson J.R., Cooper R.H. 1980. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 117, Suppl, K73–85. https://doi.org/10.1016/0014–5793(80)80572–2
  5. Rutter G.A., Denton R.M. 1988. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem. J. 252 (1), 181–189. https://doi.org/10.1042/bj2520181
  6. Rodríguez-Zavala J.S., Pardo J.P., Moreno-Sánchez R. 2000. Modulation of 2-oxoglutarate dehydrogenase complex by inorganic phosphate, Mg(2+), and other effectors. Arch Biochem. Biophys. 379 (1), 78–84. https://doi.org/10.1006/abbi.2000.1856
  7. Baeza J., Smallegan M.J., Denu J.M. 2016. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 41 (3), 231–244. https://doi.org/10.1016/j.tibs.2015.12.006
  8. Carrico C., Meyer J.G., He W., Gibson B.W., Verdin E. 2018. The mitochondrial acylome emerges: Proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab. 27 (3), 497–512. https://doi.org/10.1016/j.cmet.2018.01.016
  9. Bak S., León I.R., Jensen O.N., Højlund K. 2013. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle. J. Proteome Res. 12 (10), 4327–4339. https://doi.org/10.1021/pr400281r
  10. Linn T.C., Pettit F.H., Reed L.J. 1969. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. U S A. 62 (1), 234–241. https://doi.org/10.1073/pnas.62.1.234
  11. Yeaman S.J., Hutcheson E.T., Roche T.E., Pettit F.H., Brown J.R., Reed L.J., Watson D.C., Dixon G.H. 1978. Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry. 17 (12), 2364–2370. https://doi.org/10.1021/bi00605a017
  12. Hucho F., Randall D.D., Roche T.E., Burgett M.W., Pelley J.W., Reed L.J. 1972. Keto acid dehydrogenase complexes. XVII. Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart. Arch. Biochem. Biophys. 151 (1), 328–340. https://doi.org/10.1016/0003–9861(72)90504–8
  13. Kerbey A.L., Randle P.J., Cooper R.H., Whitehouse S., Pask H.T., Denton R.M. 1976. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem. J. 154 (2), 327–248. https://doi.org/10.1042/bj1540327
  14. Roche T.E., Cate R.L. 1976. Evidence for lipoic acid mediated NADH and acetyl-CoA stimulation of liver and kidney pyruvate dehydrogenase kinase. Biochem. Biophys. Res. Commun. 72 (4), 1375–1383. https://doi.org/10.1016/s0006–291x(76)80166–0
  15. Pratt M.L., Roche T.E. 1979. Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J. Biol. Chem. 254 (15), 7191–7196. https://doi.org/10.1016/S0021–9258(18)50303–3
  16. SprietL.L., Heigenhauser G.J.F. 2002. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc. Sport Sci. Rev. 30 (2), 91–95. https://doi.org/10.1097/00003677-200204000-00009
  17. Stacpoole P.W., Gilbert L.R., Neiberger R.E., Carney P.R., Valenstein E., Theriaque D.W., Shuster J.J. 2008. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics. 121 (5), e1223–e1228.
  18. Schoenmann Т., Tannenbaum Т., Hodgeman R.M., Rajub R.P. 2023. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochim. Biophys. Acta Mol. Basis Dis. 1869 (7), 166769. https://doi.org/10.1016/j.bbadis.2023.166769
  19. Roche T.E., Cate R.L. 1976. Evidence for lipoic acid mediated NADH and acetyl-CoA stimulation of liver and kidney pyruvate dehydrogenase kinase. 72 (4), 1375–1383. https://doi.org/10.1016/s0006–291x(76)80166–0
  20. Pratt M.L., Roche T.E. 1979. Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J. Biol. Chem. 254 (15), 7191–7196. https://doi.org/10.1016/S0021–9258(18)50303–3
  21. Roche T.E., Hiromasa Y. 2007. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol. Life Sci. 64 (7–8), 830–849. https://doi.org/10.1007/s00018–007–6380-z
  22. Patel M.S., Nemeria N.S., Furey W., Jordan F. 2014. The pyruvate dehydrogenase complexes: Structure-based function and regulation. J. Biol. Chem. 289 (24), 16615–16623. https://doi.org/10.1074/jbc.R114.563148
  23. Wagner G.R., Payne R.M. 2013. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288 (40), 29036–29045. https://doi.org/10.1074/jbc.M113.486753
  24. Zavileyskiy L.G., Aleshin V.A., Kaehne T., Karlina I.S., Artiukhov A.V., Maslova M.V., Graf A.V., Bunik V.I. 2022. The brain protein acylation system responds to seizures in the rat model of PTZ-induced epilepsy. Int. J. Mol. Sci. 23 (20), 12302. https://doi.org/10.3390/ijms232012302
  25. Sun L., Bhawal R., Xu H., Chen H., Anderson E.T., Haroutunian V., Cross A.C., Zhang S., Gibson G.E. 2021. The human brain acetylome reveals that decreased acetylation of mitochondrial proteins associates with Alzheimer's disease. J. Neurochem. 158 (2), 282–296. https://doi.org/10.1111/jnc.15377
  26. Tanner K.G., Langer M.R., Kim Y., Denu J.M. 2000. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275 (29), 22048–22055. https://doi.org/10.1074/jbc.M002893200
  27. Albaugh B.N., Arnold K.M., Denu J.M. 2011. KAT(ching) metabolism by the tail: Insight into the links between lysine acetyltransferases and metabolism. Chembiochem. 12 (2), 290–298. https://doi.org/10.1002/cbic.201000438
  28. Houtkooper R.H., Cantó C., Wanders R.J., Auwerx J. 2010. The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31 (2), 194–223. https://doi.org/10.1210/er.2009–0026
  29. Feldman J.L., Dittenhafer-Reed K.E., Kudo N., Thelen J.N., Ito A., Yoshida M., Denu J.M. 2015. Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation. Biochemistry. 54 (19), 3037–3050. https://doi.org/10.1021/acs.biochem.5b00150
  30. Madsen A.S., Andersen C., Daoud M., Anderson K.A., Laursen J.S., Chakladar S., Huynh F.K., Colaço A.R., Backos D.S., Fristrup P., Hirschey M.D., Olsen C.A. 2016. Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH. J. Biol. Chem. 291 (13), 7128–7141. https://doi.org/10.1074/jbc.M115.668699
  31. Pietrocola F., Galluzzi L., Bravo-San Pedro J.M., Madeo F., Kroemer G. 2015. Acetyl coenzyme A: A central metabolite and second messenger. Cell Metab. 21 (6), 805–821. https://doi.org/10.1016/j.cmet.2015.05.014
  32. Anderson K.A., Madsen A.S., Olsen C.A., Hirschey M.D. 2017. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim. Biophys. Acta Bioenerg. 1858 (12), 991–998. https://doi.org/10.1016/j.bbabio.2017.09.005
  33. Федотчева Н.И., Гришина Е.В., Дынник В.В. 2023. Участие митохондриальной Ca2+-независимой фосфолипазы iPLA2 в индукции митохондриальной поры длинноцепочечными ацилкарнитинами. Биол. мембраны. 40 (5), 396–403. https://doi.org/10.31857/S0233475523050043
  34. Johansson C.J., Pettersson G. 1977. Substrate-inhibiton by acetyl-CoA in the condensation reaction between oxaloacetate and acetyl-CoA catalyzed by citrate synthase from pig heart. Biochim. Biophys. Acta. 484 (1), 208–215. https://doi.org/10.1016/0005–2744(77)90126–7
  35. Johansson C.J., Pettersson G. 1979. Inhibition of pig-heart citrate synthase by carboxylic acids structurally related to oxaloacetate. Eur. J. Biochem. 93 (3), 505–513. https://doi.org/10.1111/j.1432–1033.1979.tb12849.x
  36. Erfle J.D., Sauer F. 1969. The inhibitory effects of acyl-coenzyme A esters on the pyruvate and alpha-oxoglutarate dehydrogenase complexes. Biochim. Biophys. Acta. 178 (3), 441–452. https://doi.org/10.1016/0005–2744(69)90213–7
  37. Zweier J.L., Jacobus W.E. 1987. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J. Biol. Chem. 262, 8015–8021. https://doi.org/10.1016/S0021–9258(18)47519–9
  38. Lewandowski E.D., Damico L.A., White L.T., Yu X. 1995. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria. Am. J. Physiol. 269 (1 Pt 2), H160– H168. https://doi.org/10.1152/ajpheart.1995.269.1.H160
  39. Dynnik V.V., Maevsky E.I., Kosenko E.A., Kaminsky Yu.G. 1987. Stoichiometric traps in the tricarboxylic acid cycle. I. Self-inhibition and triggering phenomena. Biochem. Int. 14 (2), 199–210.
  40. Knott E.M., Ryou M.G., Sun J., Heymann A., Sharma A.B., Lei Y., Baig M., Mallet R.T., Olivencia-Yurvati A.H. 2005. Pyruvate-fortified cardioplegia suppresses oxidative stress and enhances phosphorylation potential of arrested myocardium. Am. J. Physiol. Heart Circ. Physiol. 289 (3), H1123–H1130. https://doi.org/10.1152/ajpheart.00322.2005
  41. Mallet R.T., Olivencia-Yurvati A.H., Bünger R. 2018. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application. Exp. Biol. Med. (Maywood). 243 (2), 198–210. https://doi.org/10.1177/1535370217743919
  42. Zhou F.Q. 2022. Pyruvate as a potential beneficial anion in resuscitation fluids. Front Med. (Lausanne). 9, 905978. https://doi.org/10.3389/fmed.2022.905978
  43. Zhang X.M., Deng H., Tong J.D., Wang Y.Z., Ning X.C., Yang X.H., Zhou F.Q., Jin H.M. 2020. Pyruvate-enriched oral rehydration solution improves glucometabolic disorders in the kidneys of diabetic db/db mice. J. Diabetes Res. 2020, 2817972. https://doi.org/10.1155/2020/2817972
  44. Zhao X., Li S., Mo Y., Li R., Huang S., Zhang A., Ni X., Dai Q., Wang J. 2021. DCA protects against oxidation injury attributed to cerebral ischemia-reperfusion by regulating glycolysis through PDK2-PDH-Nrf2 axis. Oxid. Med. Cell Longev. 2021, 5173035. https://doi.org/10.1155/2021/5173035
  45. Tataranni T., Piccoli C. 2019. Dichloroacetate (DCA) and cancer: An overview towards clinical applications. Oxid. Med. Cell Longev. 2019, 8201079. https://doi.org/10.1155/2019/8201079
  46. Michelakis E.D., Gurtu V., Webster L., Barnes G., Watson G., Howard L., Cupitt J., Paterson I., Thompson R.B., Chow K., O'Regan D.P., Zhao L., Wharton J., Kiely D.G., Kinnaird A., Boukouris A.E., White C., Nagendran J., Freed D.H., Wort S.J., Gibbs J.S.R., Wilkins M.R. 2017. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 9 (413), eaao4583. https://doi.org/10.1126/scitranslmed.aao4583

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025