Piezoelectric properties of composite polymer materials based on PVDF

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper examines composite polymer materials based on a PVDF matrix, which differ in filler material. Polyvinylidene fluoride (PVDF) is an organic polymer material with a significant piezoelectric effect. Currently, due to its physical and chemical properties, it is actively used for the development and creation of acousto-electronic devices, including sensors for various purposes, as well as in flexible electronics devices. Using Raman spectroscopy and dielectric spectroscopy methods, it is shown that the electrophysical properties of a composite material based on PVDF are determined by the formulation and manufacturing conditions. The additional polarization of the PVDF composite with various fillers in an external electric field directly during the creation of samples will significantly improve the electrophysical properties (coefficient of electromechanical coupling, dielectric constant). At the same time, the use of solid-state fillers significantly improves the mechanical and operational properties of such composites.

About the authors

E. V. Golovanov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: kasper_96.96@mail.ru
Moscow, Russia

A. S. Fionov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: kasper_96.96@mail.ru
Moscow, Russia

V. V. Kashin

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: kasper_96.96@mail.ru
Moscow, Russia

V. V. Kolesov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: kasper_96.96@mail.ru
Moscow, Russia

References

  1. Zhou L., Luo J., Li Q. et. al. // J. Funct. Mater. 2018. V. 49. № 12. P. 12079. https://doi.org/10.3969/j.issn.1001-9731.2018.12.011
  2. Aghayari S. // Heliyon. 2022. V. 8. № 11. P. e11620. https://doi.org/10.1016/j.heliyon.2022.e11620
  3. Fotouhi S., Akrami R., Ferreira-Green K. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 659. P. 012085. https://10.1088/1757-899X/659/1/012085
  4. Abdrashitov E.F, Krickaya D.A., Bokun V.CH. et al. // Khim. Fizika. 2015. V. 34. № 4. P. 87. https://doi.org/10.7868/S0207401X15040020
  5. Anjana J., Prashanth K.J., Sharma A.K., Arpit J., Rashmi P.N. // Polym. Eng. Sci. 2015. V. 55. Ussue 7. P. 2589. https://doi.org/10.1002/pen.24088
  6. Bužarovska A., Kubin M., Makreski P. et al. // J. Polym. Res. 2022. V. 29. P. 272. https://doi.org/10.1007/s10965-022-03133-z
  7. Guo S.; Duan X.; Xie M. et al. // Micromachines. 2020. V. 11. P. 1076. https://doi.org/10.3390/mi11121076
  8. Golovanov E.V., Kashin V.V., Gorbachev I.A. et al. // Radioelektronika. Nanosistemy. Informacionnye Tehnologii. 2024. V. 16. № 7. P. 829. https://doi.org/10.17725/j.rensit.2024.16.829
  9. Fionov A., Kolesov V., Fionova V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1384. https://doi.org/10.1134/S1990793123060027

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences