Monitoring changes in wakefulness level using spectral power-based EEG-indices

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

There is a need for empirical indicators that can monitor subtle changes in wakefulness levels with high temporal resolution. We aimed to assess the applicability in this regard of several indices based on the average spectral power of EEG rhythms, as well as the BIS index used in anesthesiology. 26 volunteers participated in an experiment involving forced awakenings from the slow-wave stage of daytime sleep: immediately after an alarm sound, they had to performance visual-motor and arithmetic tasks. From the EEG recordings, we isolated artifact-free segments with different levels of wakefulness: “sleep”, “awakening”, “partial wakefulness” (when task performance was still difficult) and “full wakefulness” (when the ability to perform tasks correctly was restored). EEG indices were calculated for this segments and an analysis was conducted to determine the ability of each index to distinguish between these states. The results obtained revealed that the most indicative indices were Gamma/Beta, Beta/Delta, Gamma/Delta, Complex index ((Alpha + Beta)/(Delta + Theta)) and BIS index. Then, for these indices, an assessment was made of the dependence of their values on muscle and eye movement artifacts, as well as how much their values change when opening or closing the eyes. Muscle artifacts had the greatest impact on the Gamma/Beta index, and eye movement artifacts had the greatest impact on the Beta/Delta, Gamma/Delta and Complex indexes. Cleaning up artifacts using filtering and ICA transformation significantly improved indexes performance. As a result, the BIS index proved to be the most informative – it was less affected by both muscle and eye movement artifacts. Our findings suggest that EEG indices may be a useful tool for monitoring subtle changes in alertness; however a combination of several different EEG indices may improve the accuracy of the results.

Sobre autores

A. Soloveva

Institute of Higher Nervous Activity and Neurophysiology RAS

Autor responsável pela correspondência
Email: v.tirka.99@gmail.com
Moscow, Russia

M. Isaev

Institute of Higher Nervous Activity and Neurophysiology RAS

Email: v.tirka.99@gmail.com
Moscow, Russia

P. Bobrov

Institute of Higher Nervous Activity and Neurophysiology RAS

Email: v.tirka.99@gmail.com
Moscow, Russia

E. Fedosova

Institute of Higher Nervous Activity and Neurophysiology RAS

Email: v.tirka.99@gmail.com
Moscow, Russia

Y. Ukraintseva

Institute of Higher Nervous Activity and Neurophysiology RAS

Email: ukraintseva@yandex.ru
Moscow, Russia

Bibliografia

  1. Левкович К.М. Восстановление сознания при пробуждении от ортодоксального и парадоксального сна. Электрофизиологическое исследование: автореф. дис. ...канд. биол. наук. М.: 2022. 26 с.
  2. Соловьева А.К., Соловьев Н.К., Мокроусова А.О., Украинцева Ю.В. Восстановление моторных и когнитивных функций при форсированном пробуждении из третьей стадии дневного сна. Журнал высшей нервной деятельности им. И.П. Павлова. 2023. 73 (6): 785–799.
  3. Asyali M.H., Berry R.B., Khoo M.C., Altinok A. Determining a continuous marker for sleep depth. Comput Biol Med. 2007. 37 (11): 1600–1609.
  4. Connor C.W. A Forensic Disassembly of the BIS Monitor. Anesth Analg. 2020. 131 (6): 1923–1933.
  5. Connor C.W. Open Reimplementation of the BIS Algorithms for Depth of Anesthesia. Anesth. Analg. 2022. 135(4): 855–864.
  6. Horner R.L., Sanford L.D., Pack A.I., Morrison A.R. Activation of a distinct arousal state immediately after spontaneous awakening from sleep. Brain Res. 1997. 778 (1): 127–134.
  7. Huber R., Felice Ghilardi M., Massimini M., Tononi G. Local sleep and learning. Nature. 2004. 430 (6995): 78–81.
  8. Iber C., Ancoli-Israel S., Chesson A, Quan S.F. for the American Academy of Sleep Medicine. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specification. 1st ed.: Wenstchester, Illinois: American Academy of Sleep Medicine, 2007. 59 p.
  9. Jubera-García E., Vermeylen L., Peigneux P., Gevers W., Van Opstal F. Local use-dependent activity triggers mind wandering: Resource depletion or executive dysfunction? Journal of Experimental Psychology: Human Perception and Performance. 2021. 47 (12): 1575–1582.
  10. Koch C., Massimini M., Boly M., Tononi G. Neural correlates of consciousness: progress and problems. Nature reviews neuroscience. 2016. 17 (5): 307–321.
  11. Kreuzer M., Kochs E.F., Schneider G., Jordan D. Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring. J. Clin. Monit. Comput. 2014. 28 (6): 573–580.
  12. Lachaux J.P., Axmacher N., Mormann F., Halgren E., Crone N.E. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog Neurobiol. 2012. 98 (3): 279–301.
  13. Langford G.W., Meddis R., Pearson A.J.D. Awakening latency from sleep for meaningful and non-meaningful stimuli. Psychophysiology. 1974. 11 (1): 1–5.
  14. Liaukovich K., Sazhin S., Bobrov P., Ukraintseva Y. Event-related potential study of recovery of consciousness during forced awakening from slow-wave sleep and rapid eye movement sleep. Int. J. Mol. Sci. 2022. 23 (19): e11785.
  15. Linassi F., Vide S., Ferreira A., Schneider G., Gambús P., Kreuzer M. Relationships between the qNOX, qCON, burst suppression ratio, and muscle activity index of the CONOX monitor during total intravenous anesthesia: a pilot study. J. Clin. Monit. Comput. 2024. 38 (6): 1281–1290.
  16. Lipp M., Schneider G., Kreuzer M., Pilge S. Substance-dependent EEG during recovery from anesthesia and optimization of monitoring. J. Clin. Monit. Comput. 2024. 38 (3): 603–612.
  17. Makeig S., Bell A., Jung T. P., Sejnowski T. J. Independent component analysis of electroencephalographic data. Advances in neural information processing systems. 1995. 8: 145–151.
  18. Metzner C., Schilling A., Traxdorf M., Schulze H., Tziridis K., Krauss P. Extracting continuous sleep depth from EEG data without machine learning. Neurobiol. Sleep Circadian Rhythm. 2023. 14: 100097.
  19. Oliveira G.S. De, Kendall M.C., Marcus R.J., McCarthy R.J. The relationship between the Bispectral Index (BIS) and the Observer Alertness of Sedation Scale (OASS) scores during propofol sedation with and without ketamine: a randomized, double blinded, placebo controlled clinical trial. J. Clin. Monit. Comput. 2016. V. 30 (4): 495–501.
  20. Rampil I. J. A primer for EEG signal processing in anesthesia. The Journal of the American Society of Anesthesiologists. 1998. V. 89 (4): 980–1002.
  21. Rasulo F.A., Claassen J., Romagnoli S. Broad use of processed EEG: ready for prime time yet? Intensive Care Med. 2024. 50 (8): 1350–1353.
  22. Sawa T., Yamada T., Obata Y. Power spectrum and spectrogram of EEG analysis during general anesthesia: Python-based computer programming analysis. J. Clin. Monit. Comput. 2022. 36 (3): 609–621.
  23. Schuller P.J., Newell S., Strickland P.A., Barry J.J. Response of bispectral index to neuromuscular block in awake volunteers. Br. J. Anaesth. 2015. 115 (Suppl 1): i95–i103.
  24. Sederberg P.B., Kahana M.J., Howard M.W., Donner E.J., Madsen J.R. Theta and Gamma Oscillations during Encoding Predict Subsequent Recall. J. Neurosci. 2003. 23 (34): 10809–10814.
  25. Sigl J.C., Chamoun N.G. An introduction to bispectral analysis for the electroencephalogram. Journal of clinical monitoring. 1994. 10: 392–404.
  26. Stewart P.A., Murphy T., Nestor C.C., Irwin M.G. Don’t oversimplify the EEG. Intensive Care Med. 2024. 50 (9): 1560–1561.
  27. Younes M., Ostrowski M., Soiferman M., Younes H., Younes M., Raneri J., Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. Sleep. 2015. 38 (4): 641–654.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025