Determination of volatile components in various extracts from wild chamomile (Matricaria chamomilla L.) flowers by gas chromatographic-mass spectrometry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is devoted to the evaluation of the efficiency of the extraction of volatile organic compounds from flowers of wild chamomile (Matricaria chamomilla L.). The chromatographic-mass spectrometric determination of volatile organic compounds (VOCs) in extracts of wild chamomile flowers extracted by Ginsberg hydrodistillation, liquid-liquid extraction and dispersive liquid-liquid microextraction, as well as extraction under subcritical conditions and ultrasonic (US) treatment was carried out. Volatile compounds were identified by comparing the obtained mass spectra of the components with data from the NIST07 and WILEY8 databases. The contents of analytes in the extracts were estimated by internal normalization of peak areas and by the method of internal standard, as which thujone in acetone was used. VOC contents in essential oil and aromatic water obtained by Ginsberg hydrodistillation, under subcritical conditions and by ultrasonic treatment of acetone extracts from wild chamomile flowers were determined. As macrocomponents of the essential oil, β-Farnesene, α-bisabolol oxide B and bisabolol oxide A were identified. As macrocomponents of the hexane extract from aromatic water, α-Bisabolol oxide B, α-Limonene diepoxide, and bisabolol oxide A were identified. The main component of acetone extracts from wild chamomile flowers obtained under subcritical conditions and ultrasonic treatment was en-in-dicycloether. It was shown that the aromatic water of wild chamomile has higher content and wider list of VOCs in comparison with the essential oil.

全文:

受限制的访问

作者简介

Z. Temerdashev

Kuban State University

编辑信件的主要联系方式.
Email: TemZA@kubsu.ru
俄罗斯联邦, Krasnodar

T. Chubukina

Kuban State University

Email: TemZA@kubsu.ru
俄罗斯联邦, Krasnodar

N. Kiseleva

Kuban State University

Email: TemZA@kubsu.ru
俄罗斯联邦, Krasnodar

参考

  1. Acimovic M., Tesevic V., Smiljanic K.T., Cvetkovic M., Stankovic J., Kiprovski B., Sikora V. Hydrolates: by-products of essential oil distillation: Chemical composition, biological activity and potential uses // Adv. Technol. 2020. V. 9. № 2. Р. 54. https://doi.org/10.5937/savteh2002054A
  2. Silha D., Svarcova K., Bajer T., Kralovec K., Tesarova E., Mouckova K. et al. Chemical composition of natural hydrolates and their antimicrobial activity on arcobacter-like cells in comparison with other microorganisms: 23 // Molecules. 2020. V. 25. № 23. Р. 5654. https://doi.org/10.3390/molecules25235654
  3. Smiljanic K., Prodic I., Trifunovic S., Krstic Ristivojevic M., Acimovic M., Stankovic Jeremic J. et al. Multistep approach points to compounds responsible for the biological activity and safety of hydrolates from nine Lamiaceae medicinal plants on human skin fibroblasts: 11 // Antioxidants. 2023. V. 12. № 11. Р. 1988. https://doi.org/10.3390/antiox12111988
  4. Acimovic M.G. Production and use of hydrolates from the distillation process of aromatic plants / Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production / Eds. Ramawat K.G., Merillon J.-M., Arora J. Singapore: Springer Nature, 2023. Р. 453. https://doi.org/10.1007/978-981-19-8774-8_17
  5. Tavares C.S., Gameiro J.A., Roseiro L.B., Figueiredo A.C. Hydrolates: A review on their Vatiles composition, biological properties and potential uses // Phytochem. Rev. 2022. V. 21. № 5. Р. 1661. https://doi.org/10.1007/s11101-022-09803-6
  6. D’Amato S., Serio A., Lopez C., Paparella A. Hydrosols: Biological activity and potential as antimicrobials for food applications // Food Control. 2017. V. 86. Р. 126. https://doi.org/10.1016/j.foodcont.2017.10.030
  7. Jakubczyk K., Tuchowska A., Janda-Milczarek K. Plant hydrolates – antioxidant properties, chemical composition and potential applications // Biomed. Pharmacother. 2021. V. 142. Аrticle 112033. https://doi.org/10.1016/j.biopha.2021.112033
  8. Tran T.A., Ho M.T., Song Y.W., Cho M., Cho S.K. Camphor induces proliferative and anti-senescence activities in human primary dermal fibroblasts and inhibits UV-induced wrinkle formation in mouse skin // Phytother. Res. 2015. V. 29. № 12. Р. 1917. https://doi.org/10.1002/ptr.5484
  9. Chauhan E., Aishwarya J. Chamomile an ancient aromatic plant – A review // J. Ayurveda Med. Sci. 2018. V. 2. Р. 251. https://doi.org/10.5530/jams.2017.2.26
  10. Popa C.L., Lupitu A., Mot M.D., Copolovici L., Moisa C., Copolovici D.M. Chemical and biochemical characterization of essential oils and their corresponding hydrolats from six species of the Lamiaceae family: 11 // Plants. 2021. V. 10. № 11. Р. 2489. https://doi.org/10.3390/plants10112489
  11. Paolini J., Leandri C., Desjobert J.-M., Barboni T., Costa J. Comparison of liquid–liquid extraction with headspace methods for the characterization of Vatile fractions of commercial hydrolats from typically Mediterranean species // J. Chromatogr. A. 2008. V. 1193. № 1. Р. 37. https://doi.org/10.1016/j.chroma.2008.04.021
  12. Inouye S., Takahashi M., Abe S., Inouye S., Takahashi M., Abe S. A comparative study on the composition of forty four hydrosols and their essential oils // IJEOT. 2008. V. 3. Р. 89.
  13. Hamedi A., Afifi M., Etemadfard H., Etemadfard H. Investigating chemical composition and indications of hydrosol soft drinks (aromatic waters) used in Persian folk medicine for women’s hormonal and reproductive health conditions // J. Evid.-Based Complementary Altern. Med. 2017. V. 22. № 4. Р. 824. https://doi.org/10.1177/2156587217717413
  14. Павлова Л.В., Платонов И.А., Куркин В.А., Афанасьева П.В., Новикова Е.А., Муханова И.М. Оценка эффективности извлечения биологически активных соединений экстрагентами в субкритическом состоянии из цветков ромашки аптечной (Chamomilla recutita R.), произрастающей в Cамарской области // Сверхкритические флюиды: теория и практика. 2018. Т. 13. № 1. С. 16. (Pavlova L.V., Platonov I.A., Kurkin V.A., Afanasyeva P.V., Novikova E.A., Mukhanova I.M. Evaluation of the extraction efficiency of biologically active compounds from Chamomile flowers (Chamomilla recutita R.) grown in the Samara region by extractants in the subcritical state // Russ. J. Phys. Chem. B. 2018. V. 12. № 8. Р. 1212.) https://doi.org/10.1134/S1990793118080109
  15. Mousavi L., Tamiji Z., Khoshayand M. R. Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method – A review // Talanta. 2018. V. 190. Р. 335. https://doi.org/10.1016/j.talanta.2018.08.002
  16. Sereshti H., Karimi M., Samadi S. Application of response surface method for optimization of dispersive liquid–liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil // J. Chromatogr. A. 2009. V. 1216. № 2. Р. 198. https://doi.org/10.1016/j.chroma.2008.11.081
  17. Sereshti H., Izadmanesh Y., Samadi S. Optimized ultrasonic assisted extraction–dispersive liquid–liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent // J. Chromatogr. A. 2011. V. 1218. № 29. Р. 4593. https://doi.org/10.1016/j.chroma.2011.05.037
  18. Khajeh M., Moghaddam Z.S., Bohlooli M., Khajeh A. Modeling of dispersive liquid–liquid microextraction for determination of essential oil from Borago officinalis L. by using combination of Artificial Neural Network and Genetic Algorithm Method // J. Chromatogr. Sci. 2015. V. 53. № 10. Р. 1801. https://doi.org/10.1093/chromsci/bmv065
  19. Huie C. W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants // Anal. Bioanal. Chem. 2002. V. 373. № 1–2. Р. 23. https://doi.org/10.1007/s00216-002-1265-3
  20. Государственная Фармакопея Российской Федерации. Изд. 14. Москва, 2018. Т. 4. С. 6394.
  21. Милевская В.В., Статкус М.А., Темердашев З.А., Киселева Н.В., Бутыльская Т.С., Шилько Е.А. Экстракция и определение биологически активных компонентов зверобоя и препаратов на его основе // Журн. аналит. химии. 2016. Т. 71. № 7. C. 768. https://doi.org/10.7868/S004445021607013 (Milevskaya V.V., Temerdashev Z.A., Kiseleva N.V., Butyl’skaya T.S., Shil’ko E.A., Statkus M.A. Extraction and determination of biologically active components of St. John’s wort and its pharmaceutical preparations // J. Anal. Chem. 2016. V. 71. № 7. P. 741.) https://doi.org/10.1134/S1061934816070133
  22. Singh O., Khanam Z., Misra N., Srivastava M. Chamomile (Matricaria chamomilla L.): An overview // Pharmacogn. Rev. 2011. V. 5. № 9. Р. 82. https://doi.org/10.4103/0973-7847.79103
  23. Raal A., Orav A., Pussa T., Valner C., Malmiste B., Arak E. Content of essential oil, terpenoids and polyphenols in commercial chamomile (Chamomilla recutita L. Rauschert) teas from different countries // Food Chem. 2012. V. 131. № 2. Р. 632. https://doi.org/10.1016/j.foodchem.2011.09.042
  24. McKay D. L., Blumberg J. B. A Review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.) // Phytother. Res. 2006. V. 20. № 7. Р. 519. https://doi.org/10.1002/ptr.1900
  25. Wen Y., Nie J., Li Z.-G., Xu X.-Y., Wei D., Lee M.-R. The development of ultrasound-assisted extraction/dispersive liquid–liquid microextraction coupled with DSI-GC-IT/MS for analysis of essential oil from fresh flowers of Edgeworthia chrysantha Lindl // Anal. Methods. 2014. V. 6. № 10. Р. 3345. https://doi.org/10.1039/C4AY00115J

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. GC-MS chromatogram of a solution of chamomile essential oil in hexane: 1 – 1,8-cineole, 2 – camphor, 3 – (E)-β-farnesene, 4 – artemiseol, 5 – (-)-germacrene D, 6 – β-caryophyllene, 7 – (2E,6E)-3,7,11-trimethyl-2,6,10-dodecatrien-1-ol, 8 – cyclopentylmethanol, 9 – (-)-spathulenol, 10 – (-)-β-caryophyllene oxide, 11 – 3-thujaol, 12 – α-bisabolol B oxide, 13 – 2,3,4-trimethylhexane, 14 – (+)-spathulenol, 15 – (–)-germacrene D, 16 – α-bisabolol oxide B, 17 – α-limonene diepoxide, 18 – 3-thujanol, 19 – chamazulene, 20 – bisabolol oxide A, 21 – 2-nonanone, 22 – en-yne-dicycloether, 23 – (Z)-9-dodecen-1-ol.

下载 (216KB)
3. Fig. 2. Efficiency of extraction of (a) (–)-spathulenol, (b) bisabolol α-oxide, (c) 3-thuyanol, (d) limonene α-diepoxide and (e) en-in-dicycloether from chamomile hydrolate “Marislavna”.

下载 (817KB)

版权所有 © Russian Academy of Sciences, 2025