Potential Jet Flows of Burning Fluids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Within the framework of the theory of jets flows in an ideal fluid, the combustion of a liquid monopropellant jet flowing out of a vessel with flat walls is investigated. An exact solution to the problem is obtained and a parametric study of the influence of the vessel geometry and combustion parameters on the shape, flow rate coefficient and length of the jet is carried out. This work expands the class of problems solved by methods of the theory of plane potential jets in an ideal fluid.

About the authors

S. A. Rashkovskiy

Ishlinsky Institute for Problems in Mechanics RAS

Email: rash@ipmnet.ru
Moscow, Russia

References

  1. Loitsyanskii L.G. Mechanics of Liquids and Gases // Int. Series of Monographs in Aeronautics and Astronautics, 1966, vol. 6. https://doi.org/10.1016/C2013-0-05328-5
  2. Gurevich M.I. The theory of jets in an ideal fluid // Elsevier, 1966, vol. 93. https://doi.org/10.1016/C2013-0-05448-5
  3. Minazetdinov N. M. A hydrodynamic interpretation of a problem in the theory of the dimensional electrochemical machining of metals // J. of Appl. Math.& Mech., 2009, vol. 73, no. 1, pp. 41–47. https://doi.org/10.1016/j.jappmathmech.2009.03.009
  4. Andronov P. R., Guvernyuk S. V. The streamline flow around a permeable plate in a plane-parallel channel // J. of Appl. Math.& Mech., 2015, vol. 79, no. 3, pp. 270–280. https://doi.org/10.1016/j.jappmathmech.2015.09.007
  5. Semenov Y.A., Wu G.X. Water entry of an expanding wedge/plate with flow detachment // J. of Fluid Mech., 2016, vol. 797, pp. 322–344. https://doi.org/10.1017/jfm.2016.291
  6. Weiss A.D., Coenen W., Sánchez A.L. Aerodynamics of planar counterflowing jets // J. of Fluid Mech., 2017, vol. 821, pp. 1–30. https://doi.org/10.1017/jfm.2017.192
  7. Semenov Y.A., Wu G.X. Free-surface gravity flow due to a submerged body in uniform current // J. of Fluid Mech., 2020, vol. 883, pp. A60. https://doi.org/10.1017/jfm.2019.930
  8. Marshall J.S., Johnson E.R. The high-speed submerged hydrofoil // J. of Fluid Mech., 2023, vol. 954, pp. A45. https://doi.org/10.1017/jfm.2022.1042
  9. Wen X., Liu P., Qu Q. et al. Impact of wedge bodies on wedge-shaped water surface with varying speed // J. of Fluids and Struct., 2020, vol. 92, no. 3–4, pp. 102831. https://doi.org/10.1016/j.jfluidstructs.2019.102831
  10. Paushkin Ya.M., Chulkov A.Z. (Editor). Rocket propellants. M.: Mashinostroenie, 1975, 188 p. (in Russian)
  11. Lee T. W., Gore, J. P., Faeth, G.M. et al. Analysis of combusting high-pressure monopropellant sprays// Combustion sci.&techn., 1988, vol. 57. no. 4–6, pp. 95–112. https://doi.org/10.1080/00102208808923946
  12. Boyer J.E. Combustion characteristics and flame structure of nitromethane liquid monopropellant // ProQuest Dissert.&Theses, 2005, vol. 66–12, № B, pp. 6871.
  13. Korobeinichev O.P., Paletskii A.A., Volkov E.N. Flame structure and combustion chemistry of energetic materials // Rus. J. of Physical Chemistry B, 2008, vol. 2, pp. 206–228. https://doi.org/10.1134/S1990793108020085
  14. Nekrasov V.G., Makarov A.F., Belov P.A. Nitrogen monopropellant — results of the first experiments // Aerospace engin.&techn., 2009, no. 4, pp. 35–39.
  15. Zel’dovich Y.B., Barenblatt G.I., Librovich V.B. et al. The Mathematical Theory of Combustion and Explosions. N.-Y.: Springer, 1985. 597 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences