Potential Jet Flows of Burning Fluids
- Authors: Rashkovskiy S.A.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics RAS
- Issue: Vol 89, No 5 (2025)
- Pages: 843-860
- Section: Articles
- URL: https://rjsocmed.com/0032-8235/article/view/696417
- DOI: https://doi.org/10.7868/S3034575825050106
- ID: 696417
Cite item
Abstract
Within the framework of the theory of jets flows in an ideal fluid, the combustion of a liquid monopropellant jet flowing out of a vessel with flat walls is investigated. An exact solution to the problem is obtained and a parametric study of the influence of the vessel geometry and combustion parameters on the shape, flow rate coefficient and length of the jet is carried out. This work expands the class of problems solved by methods of the theory of plane potential jets in an ideal fluid.
About the authors
S. A. Rashkovskiy
Ishlinsky Institute for Problems in Mechanics RAS
Email: rash@ipmnet.ru
Moscow, Russia
References
- Loitsyanskii L.G. Mechanics of Liquids and Gases // Int. Series of Monographs in Aeronautics and Astronautics, 1966, vol. 6. https://doi.org/10.1016/C2013-0-05328-5
- Gurevich M.I. The theory of jets in an ideal fluid // Elsevier, 1966, vol. 93. https://doi.org/10.1016/C2013-0-05448-5
- Minazetdinov N. M. A hydrodynamic interpretation of a problem in the theory of the dimensional electrochemical machining of metals // J. of Appl. Math.& Mech., 2009, vol. 73, no. 1, pp. 41–47. https://doi.org/10.1016/j.jappmathmech.2009.03.009
- Andronov P. R., Guvernyuk S. V. The streamline flow around a permeable plate in a plane-parallel channel // J. of Appl. Math.& Mech., 2015, vol. 79, no. 3, pp. 270–280. https://doi.org/10.1016/j.jappmathmech.2015.09.007
- Semenov Y.A., Wu G.X. Water entry of an expanding wedge/plate with flow detachment // J. of Fluid Mech., 2016, vol. 797, pp. 322–344. https://doi.org/10.1017/jfm.2016.291
- Weiss A.D., Coenen W., Sánchez A.L. Aerodynamics of planar counterflowing jets // J. of Fluid Mech., 2017, vol. 821, pp. 1–30. https://doi.org/10.1017/jfm.2017.192
- Semenov Y.A., Wu G.X. Free-surface gravity flow due to a submerged body in uniform current // J. of Fluid Mech., 2020, vol. 883, pp. A60. https://doi.org/10.1017/jfm.2019.930
- Marshall J.S., Johnson E.R. The high-speed submerged hydrofoil // J. of Fluid Mech., 2023, vol. 954, pp. A45. https://doi.org/10.1017/jfm.2022.1042
- Wen X., Liu P., Qu Q. et al. Impact of wedge bodies on wedge-shaped water surface with varying speed // J. of Fluids and Struct., 2020, vol. 92, no. 3–4, pp. 102831. https://doi.org/10.1016/j.jfluidstructs.2019.102831
- Paushkin Ya.M., Chulkov A.Z. (Editor). Rocket propellants. M.: Mashinostroenie, 1975, 188 p. (in Russian)
- Lee T. W., Gore, J. P., Faeth, G.M. et al. Analysis of combusting high-pressure monopropellant sprays// Combustion sci.&techn., 1988, vol. 57. no. 4–6, pp. 95–112. https://doi.org/10.1080/00102208808923946
- Boyer J.E. Combustion characteristics and flame structure of nitromethane liquid monopropellant // ProQuest Dissert.&Theses, 2005, vol. 66–12, № B, pp. 6871.
- Korobeinichev O.P., Paletskii A.A., Volkov E.N. Flame structure and combustion chemistry of energetic materials // Rus. J. of Physical Chemistry B, 2008, vol. 2, pp. 206–228. https://doi.org/10.1134/S1990793108020085
- Nekrasov V.G., Makarov A.F., Belov P.A. Nitrogen monopropellant — results of the first experiments // Aerospace engin.&techn., 2009, no. 4, pp. 35–39.
- Zel’dovich Y.B., Barenblatt G.I., Librovich V.B. et al. The Mathematical Theory of Combustion and Explosions. N.-Y.: Springer, 1985. 597 p.
Supplementary files




