Метилирование регуляторных регионов генов системы репарации ДНК при атеросклерозе сонных артерий
- Авторы: Бабушкина Н.П.1, Кучер А.Н.1, Афанасьев С.А.2, Муслимова Э.Ф.2, Козлов Б.Н.2, Кузнецов М.С.2, Слепцов А.А.1, Салахов Р.Р.1, Голубенко М.В.1, Гончарова И.А.1, Брагина Е.Ю.1, Гомбоева Д.Е.1, Королёва Ю.А.1, Зарубин А.А.1, Назаренко М.С.1
-
Учреждения:
- Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
- Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук
- Выпуск: Том 57, № 4 (2023)
- Страницы: 647-664
- Раздел: ГЕНОМИКА. ТРАНСКРИПТОМИКА
- URL: https://rjsocmed.com/0026-8984/article/view/655399
- DOI: https://doi.org/10.31857/S002689842304002X
- EDN: https://elibrary.ru/QKQNQS
- ID: 655399
Цитировать
Аннотация
Статус метилирования ДНК в геноме человека изменяется в патогенезе распространенных заболеваний и выступает в качестве предиктора ожидаемой продолжительности жизни. В связи с этим представляет интерес исследование уровня метилирования регуляторных регионов генов, отвечающих за общебиологические процессы, потенциально значимые для развития возраст-ассоциированных заболеваний. Среди них гены белков различных систем репарации ДНК, продукты которых характеризуются плейотропными эффектами. В исследовании представлены результаты таргетного анализа метилирования двух регионов генома (промоторного участка гена MLH1 и энхансерного ‒ вблизи гена ATM) в разных тканях пациентов с атеросклерозом сонных артерий. В результате анализа профилей метилирования исследованных генов в различных тканях одних и тех же индивидов выявлено наличие выраженных различий между лейкоцитами и тканями сосудистой стенки. Различия по уровням метилирования в нормальных и пораженных атеросклерозом тканям сонных артерий обнаружены только для двух исследованных CpG-сайтов в гене ATM (chr11:108089866 и chr11:108090020, сборка GRCh37/hg19). На основании этих данных можно предполагать участие ATM в развитии атеросклероза. “Нагруженность” изученных регионов сайтами связывания транскрипционных факторов (по данным ReMapp2022) свидетельствует о том, что тканеспецифичный характер метилирования регуляторных участков генов MLH1 и ATM может быть связан с уровнем их экспрессии в конкретной ткани. Показано, что межиндивидуальные различия в уровнях метилирования CpG-сайтов ассоциированы с достаточно удаленными нуклеотидными заменами.
Ключевые слова
Об авторах
Н. П. Бабушкина
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Автор, ответственный за переписку.
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
А. Н. Кучер
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
С. А. Афанасьев
Научно-исследовательский институт кардиологии,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634034,
Томск
Э. Ф. Муслимова
Научно-исследовательский институт кардиологии,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634034,
Томск
Б. Н. Козлов
Научно-исследовательский институт кардиологии,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634034,
Томск
М. С. Кузнецов
Научно-исследовательский институт кардиологии,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634034,
Томск
А. А. Слепцов
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
Р. Р. Салахов
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
М. В. Голубенко
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
И. А. Гончарова
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
Е. Ю. Брагина
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
Д. Е. Гомбоева
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
Ю. А. Королёва
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
А. А. Зарубин
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
М. С. Назаренко
Научно-исследовательский институт медицинской генетики,Томский национальный исследовательский медицинский центр Российской академии наук
Email: nad.babushkina@medgenetics.ru
Россия, 634050, Томск
Список литературы
- Feinberg A.P. (2008) Epigenetics at the epicenter of modern medicine. JAMA. 299, 1345–1350. https://doi.org/10.1001/jama.299.11.1345
- Paul D.S., Beck S. (2014) Advances in epigenome-wide association studies for common diseases. Trends Mol. Med. 20(10), 541–543. https://doi.org/10.1016/j.molmed.2014.07.002
- Neidhart M. (2015) DNA Methylation and Complex Human Disease. Elsevier Inc. 529 p. https://doi.org/10.1016/C2013-0-13028-0
- Кучер А.Н., Назаренко М.С., Марков А.В., Королёва Ю.А., Барбараш О.Л. (2017) Вариабельность профилей метилирования CpG-сайтов генов микроРНК в лейкоцитах и тканях сосудов при атеросклерозе у человека. Биохимия. 82(6), 923–933.
- Levy M.A., McConkey H., Kerkhof J., Barat-Houari M., Bargiacchi S., Biamino E., Bralo M.P., Cappuccio G., Ciolfi A., Clarke A., DuPont B.R., Elting M.W., Faivre L., Fee T., Fletcher R.S., Cherik F., Foroutan A., Friez M.J., Gervasini C., Haghshenas S., Hilton B.A., Jenkins Z., Kaur S., Lewis S., Louie R.J., Maitz S., Milani D., Morgan A.T., Oegema R., Ostergaard E., Pallares N.R., Piccione M., Pizzi S., Plomp A.S., Poulton C., Reilly J., Relator R., Rius R., Robertson S., Rooney K., Rousseau J., Santen G.W.E., Santos-Simarro F., Schijns J., Squeo G.M., St John M., Thauvin-Robinet C., Traficante G., van der Sluijs P.J., Vergano S.A., Vos N., Walden K.K., Azmanov D., Balci T., Banka S., Gecz J., Henneman P., Lee J.A., Mannens M.M.A.M., Roscioli T., Siu V., Amor D.J., Baynam G., Bend E.G., Boycott K., Brunetti-Pierri N., Campeau P.M., Christodoulou J., Dyment D., Esber N., Fahrner J.A., Fleming M.D., Genevieve D., Kerrnohan K.D., McN-eill A., Menke L.A., Merla G., Prontera P., Rockman-Greenberg C., Schwartz C., Skinner S.A., Stevenson R.E., Vitobello A., Tartaglia M., Alders M., Tedder M.L., Sadikovic B. (2021) Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv. 3(1), 100075. https://doi.org/10.1016/j.xhgg.2021.100075
- Salameh Y., Bejaoui Y., El Hajj N. (2020) DNA Methylation biomarkers in aging and age-related diseases. Front. Genet. 11, 171. https://doi.org/10.3389/fgene.2020.00171
- Yuen R.K., Robinson W.P. (2011) A high capacity of the human placenta for genetic and epigenetic variation: implications for assessing pregnancy outcome. Placenta. 32, S136–S141. https://doi.org/10.1016/j.placenta.2011.01.003
- Aavik E., Babu M., Yla-Herttuala S. (2019) DNA methylation processes in atheosclerotic plaque. Atherosclerosis. 281, 168–179. https://doi.org/10.1016/j.atherosclerosis.2018.12.006
- Назаренко М.С., Марков А.В., Королева Ю.А., Слепцов А.А., Казанцев А.Н., Барбараш О.Л., Пузырев В.П. (2017) Идентификация дифференциально метилированных генов, потенциально связанных с атеросклерозом у человека. Российский кардиологический журнал. 22(10), 42–48. https://doi.org/10.15829/1560-4071-2017-10-42-48
- Королёва Ю.А., Марков А.В., Гончарова И.А., Слепцов А.А., Бабушкина Н.П., Валиахметов Н.Р., Шарыш Д.В., Зарубин А.А., Кузнецов М.С., Козлов Б.Н., Назаренко М.С. (2020) Метилирование дезоксирибонуклеиновой кислоты в области энхансера генов CDKN2A/2B и CDKN2B-AS1 в сосудах и клетках крови у пациентов с атеросклерозом сонных артерий. Российский кардиологический журн. 25(10), 32–40. https://doi.org/10.15829/1560-4071-2020-4060)
- Бабушкина Н.П., Постригань А.Е., Кучер А.Н. (2021) Вовлеченность генов белков BRCA1-ассоциированного комплекса наблюдения за геномом (BASC) в развитие многофакторной патологии. Молекуляр. биология. 55(2), 318‒337. https://doi.org/10.31857/S0026898421020038
- Kar S.P., Quiros P.M., Gu M., Jiang T., Mitchell J., Langdon R., Iyer V., Barcena C., Vijayabaskar M.S., Fabre M.A., Carter P., Petrovski S., Burgess S., Vassiliou G.S. (2022) Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54(8), 1155‒1166. https://doi.org/10.1038/s41588-022-01121-z
- Sambrook J., Russel D.W. (2001) Molecular Cloning: A Laboratory Manual (3rd edition). New York: Cold Spring Harbor Lab. Press, 344 p.
- Hoffman M.M., Ernst J., Wilder S.P., Kundaje A., Harris R.S., Libbrecht M., Giardine B., Ellenbogen P.M., Bilmes J.A., Birney E., Hardison R.C., Dunham I., Kellis M., Noble W.S. (2013) Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41(2), 827–841. https://doi.org/10.1093/nar/gks1284
- Fishilevich S., Nudel R., Rappaport N., Hadar R., Plaschkes I., Iny Stein T., Rosen N., Kohn A., Twik M., Safran M., Lancet D., Cohen D. (2017) GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017, bax028. https://doi.org/10.1093/database/bax028
- Irizarry R.A., Ladd-Acosta C., Wen B., Wu Z., Montano C., Onyango P., Cui H., Gabo K., Rongione M., Webster M., Ji H., Potash J., Sabunciyan S., Feinberg A.P. (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2), 178–186. https://doi.org/10.1038/ng.298
- Sandoval J., Heyn H., Moran S., Serra-Musach J., Pujana M.A., Bibikova M., Esteller M. (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 6(6), 692–702. https://doi.org/10.4161/epi.6.6.16196
- Masser D.R., Stanford D.R., Freeman W.M. (2015) Targeted DNA methylation analysis by next-generation sequencing. J. Vis. Exp. 96, 52488. https://doi.org/10.3791/52488
- Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. (2020) The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38(3), 276–278. https://doi.org/10.1038/s41587-020-0439-x
- Pedersen B.S., Eyring K., De S., Yang I.V., Schwartz D.A. (2005) Fast and accurate alignment of long bisulfite-seq reads. arXiv. 1401.1129v2. https://doi.org/arxiv.org/abs/1401.1129
- Krueger F., Andrews S.R. (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 27(11), 1571–1572. https://doi.org/10.1093/bioinformatics/btr167
- Okonechnikov K., Conesa A., Garcia-Alcalde F. (2016) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2(2), 292–294. https://doi.org/10.1093/bioinformatics/btv566
- Daley T., Smith A.D. (2013) Predicting the molecular complexity of sequencing libraries. Nat. Methods. 10(4), 325–327. https://doi.org/10.1038/nmeth.2375
- Ewels P., Magnusson M., Lundin S., Käller M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354
- Akalin A., Kormaksson M., Li S., Garrett-Bakelman F.E., Figueroa M.E., Melnick A., Mason C.E. (2012) -methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13(10), R87. https://doi.org/10.1186/gb-2012-13-10-r87
- Guo W., Zhu P., Pellegrini M., Zhang M.Q., Wang X., Ni Z. (2018) CGmapTools improves the precision of heterozygous SNV calls and supports allele-specific methylation detection and visualization in bisulfite-sequencing data. Bioinformatics. 34(3), 381–387. https://doi.org/10.1093/bioinformatics/btx595
- Wang K., Li M., Hakonarson H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38(16), e164. https://doi.org/10.1093/nar/gkq603
- van der Maaten L.J.P., Hinton G.E. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605.
- Barrett J.C., Fry B., Maller J., Daly M.J. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 21(2), 263–265. https://doi.org/10.1093/bioinformatics/bth457
- Nettersheim F.S., Picard F.S.R., Hoyer F.F., Winkels H. (2022) Immunotherapeutic strategies in cancer and atherosclerosis-two sides of the same coin. Front. Cardiovasc. Med. 8, 812702. https://doi.org/10.3389/fcvm.2021.812702
- Fasehee H., Fakhraee M., Davoudi S., Vali H., Faghihi S. (2019) Cancer biomarkers in atherosclerotic plaque: evidenced from structural and proteomic analyses. Biochem. Biophys. Res. Commun. 509(3), 687–693. https://doi.org/10.1016/j.bbrc.2018.12.160
- Byrd P.J., Cooper P.R., Stankovic T., Kullar H.S., Watts G.D., Robinson P.J., Taylor M.R. (1996) A gene transcribed from the bidirectional ATM promoter coding for a serine rich protein: amino acid sequence, structure and expression studies. Hum. Mol. Genet. 5(11), 1785–1791. https://doi.org/10.1093/hmg/5.11.1785
- Medina R., van der Deen M., Miele-Chamberland A., Xie R.L., van Wijnen A.J., Stein J.L., Stein G.S. (2007) The HiNF-P/p220NPAT cell cycle signaling pathway controls nonhistone target genes. Cancer Res. 67(21), 10334–10342. https://doi.org/10.1158/0008-5472.CAN-07-1560
- Lesurf R., Cotto K.C., Wang G., Griffith M., Kasaian K., Jones S.J., Montgomery S.B., Griffith O.L.; Open Regulatory Annotation Consortium. (2016) ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res. 44(D1), D126‒D132. https://doi.org/10.1093/nar/gkv1203
- Floyd S.R., Pacold M.E., Huang Q., Clarke S.M., Lam F.C., Cannell I.G., Bryson B.D., Rameseder J., Lee M.J., Blake E.J., Fydrych A., Ho R., Greenberger B.A., Chen G.C., Maffa A., Del Rosario A.M., Root D.E., Carpenter A.E., Hahn W.C., Sabatini D.M., Chen C.C., White F.M., Bradner J.E., Yaffe M.B. (2013) The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. 498(7453), 246–250. https://doi.org/10.1038/nature12147
- Muhar M., Ebert A., Neumann T., Umkehrer C., Jude J., Wieshofer C., Rescheneder P., Lipp J.J., Herzog V.A., Reichholf B., Cisneros D.A., Hoffmann T., Schlapansky M.F., Bhat P., von Haeseler A., Köcher T., Obenauf A.C., Popow J., Ameres S.L., Zuber J. (2018) SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 360(6390), 800–805. https://doi.org/10.1126/science.aao2793
- Kumar R., Manning J., Spendlove H.E., Kremmidiotis G., McKirdy R., Lee J., Millband D.N., Cheney K.M., Stampfer M.R., Dwivedi P.P., Morris H.A., Callen D.F. (2006) ZNF652, a novel zinc finger protein, interacts with the putative breast tumor suppressor CBFA2T3 to repress transcription. Mol. Cancer Res. 4(9), 655–665. https://doi.org/10.1158/1541-7786.MCR-05-0249
- Pilarowski G.O., Vernon H.J., Applegate C.D., Boukas L., Cho M.T., Gurnett C.A., Benke P.J., Beaver E., Heeley J.M., Medne L., Krantz I.D., Azage M., Niyazov D., Henderson L.B., Wentzensen I.M., Baskin B., Sacoto M.J.G., Bowman G.D., Bjornsson HT. (2018) Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J. Med. Genet. 55(8), 561–566. https://doi.org/10.1136/jmedgenet-2017-104759
- Hossain M.B., Vahter M., Concha G., Broberg K. (2012) Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype. Metallomics. 4(11), 1167–1175. https://doi.org/10.1039/c2mt20120h
- Ghosh M., Oner D., Poels K., Tabish A.M., Vlaanderen J., Pronk A., Kuijpers E., Lan Q., Vermeulen R., Bekaert B., Hoet P.H., Godderis L. (2017) Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology. 11(9–10), 1195–1210. https://doi.org/10.1080/17435390.2017.1406169
- Sanchez H., Hossain M.B., Lera L., Hirsch S., Albala C., Uauy R., Broberg K., Ronco A.M. (2017) High levels of circulating folate concentrations are associated with DNA methylation of tumor suppressor and repair genes p16, MLH1, and MGMT in elderly Chileans. Clin. Epigenetics. 9, 74. https://doi.org/10.1186/s13148-017-0374-y
- Remely M., Ferk F., Sterneder Sюю, Setayesh T., Kepcija T., Roth S., Noorizadeh R., Greunz M., Rebhan I., Wagner K.H., Knasmüller S., Haslberger A. (2017) Vitamin E modifies high-fat diet-induced increase of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Nutrients. 9(6), 607. https://doi.org/10.3390/nu9060607
- Bhattacharjee P., Sanyal T., Bhattacharjee S., Bhattacharjee P. (2018) Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India. Environ. Res. 163, 289–296. https://doi.org/10.1016/j.envres.2018.01.002
- Zappe K., Pointner A., Switzeny O.J., Magnet U., Tomeva E., Heller J., Mare G., Wagner K.H., Knasmueller S., Haslberger A.G. (2018) Counteraction of oxidative stress by vitamin E affects epigenetic regulation by increasing global methylation and gene expression of MLH1 and DNMT1 dose dependently in Caco-2 cells. Oxid. Med. Cell Longev. 3734250. https://doi.org/10.1155/2018/3734250
- Mohammad G., Radhakrishnan R., Kowluru R.A. (2019) Epigenetic modifications compromise mitochondrial DNA quality control in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 60(12), 3943–3951. https://doi.org/10.1167/iovs.19-27602
- Mulder R.H., Neumann A., Cecil C.A.M., Walton E., Houtepen L.C., Simpkin A.J., Rijlaarsdam J., Heijmans B.T., Gaunt T.R., Felix J.F., Jaddoe V.W.V., Bakermans-Kranenburg M.J., Tiemeier H., Relton C.L., van IJzendoorn M.H., Suderman M. (2021) Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence. Hum. Mol. Genet. 30(1), 119–134. https://doi.org/10.1093/hmg/ddaa280
- Feinberg A.P., Irizarry R.A. (2010) Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA. 107(1), 1757–1764. https://doi.org/10.1073/pnas.0906183107
- Grundberg E., Meduri E., Sandling J.K., Hedman A.K., Keildson S., Buil A., Busche S., Yuan W., Nisbet J., Sekowska M., Wilk A., Barrett A., Small K.S., Ge B., Caron M., Shin S.Y.; Multiple Tissue Human Expression Resource Consortium; Lathrop M., Dermitzakis E.T., McCarthy M.I., Spector T.D., Bell J.T., Deloukas P. (2013) Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am. J. Hum. Genet. 93(5), 876–890. https://doi.org/10.1016/j.ajhg.2013.10.004
- Ahsan M., Ek W.E., Rask-Andersen M., Karlsson T., Lind-Thomsen A., Enroth S., Gyllensten U., Johansson A. (2017) The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases. PLoS Genet. 13(9), 1007005. https://doi.org/10.1371/journal.pgen.1007005
- Zhou D., Li Z., Yu D., Wan L., Zhu Y., Lai M., Zhang D. (2015) Polymorphisms involving gain or loss of CpG sites are significantly enriched in trait-associated SNPs. Oncotarget. 6(37), 39995–40004. https://doi.org/10.18632/oncotarget.5650
- Gong J., Wan H., Mei S., Ruan H., Zhang Z., Liu C., Guo A.Y., Diao L., Miao X., Han L. (2019) Pancan-meQTL: a database to systematically evaluate the effects of genetic variants on methylation in human cancer. Nucleic Acids Res. 47(D1), D1066–D1072. https://doi.org/10.1093/nar/gky814
- Бабушкина Н.П., Кучер А.Н. (2023) Регуляторный потенциал SNP-маркеров в генах, кодирующих белки систем репарации ДНК. Молекуляр. биология. 57(1), 24–46.
- Zaina S., Heyn H., Carmona F.J., Varol N., Sayols S., Condom E., Ramírez-Ruz J., Gomez A., Gonçalves I., Moran S., Esteller M. (2014) DNA methylation map of human atherosclerosis. Circ. Cardiovasc. Genet. 7(5), 692–700. https://doi.org/10.1161/CIRCGENETICS.113.000441
- Li J., Zhang X., Yang M., Yang H., Xu N., Fan X., Liu G., Jiang X., Fan J., Zhang L., Zhang H., Zhou Y., Li R., Gao S., Jin J., Jin Z., Zheng J., Tu Q., Ren J. (2021) DNA methylome profiling reveals epigenetic regulation of lipoprotein-associated phospholipase A2 in human vulnerable atherosclerotic plaque. Clin. Epigenetics. 13(1), 161. https://doi.org/10.1186/s13148-021-01152-z
- Istas G., Declerck K., Pudenz M., Szic K.S.V., Lendinez-Tortajada V., Leon-Latre M., Heyninck K., Haegeman G., Casasnovas J.A., Tellez-Plaza M., Gerhauser C., Heiss C., Rodriguez-Mateos A., Berghe W.V. (2017) Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Sci. Rep. 7(1), 5120. https://doi.org/10.1038/s41598-017-03434-0
Дополнительные файлы
