Amidothiazole derivatives of (+)-usnic acid effectively inhibit TDP1 and sensitize tumor cells to the effects of topotecan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The DNA repair enzyme tyrosyl-DNA phosphodiesterase-1 (TDP1) removes various adducts from the 3’-end of DNA, including those induced by anticancer chemotherapeutics, and as therefore considered an important therapeutic target. Previously we investigated TDP1 inhibitors as sensitizers for the anticancer drug topotecan. Now, we have demonstrated that usnic acid derivatives containing a thiazole ring with an amide linker exhibited inhibitory activity against TDP1 at micromolar and submicromolar concentrations. Moreover, the lead compound OL11-119, (R)-N-[4-(8-acetyl-1,3,7-trihydroxy-2,9a-dimethyl-9-oxo-9,9a-dihydrodibenzo[b,d]furan-4-yl)thiazol-2-yl]-4-bromobenzamide, was found to enhance topotecan-induced tumor cell death at a non-toxic concentration. Molecular docking of OL11-119 and its analog with hydrazone linker, OL9-119, a previously identified potent TDP1 inhibitor, was performed. The binding energy of OL9-119 to the enzyme active site was shown to be lower than that of OL11-119, which correlated with the higher inhibitory activity of OL9-119 against TDP1.

About the authors

A. A. Chepanova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

A. L. Zakharenko

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

N. S. Dyrkheeva

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

I. A. Chernyshova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences; Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

A. S. Filimonov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

O. A. Luzina

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

M. S. Kupryushkin

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

S. A. Zhukov

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

A. V. Tsukanov

Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

N. F. Salakhutdinov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

O. I. Lavrik

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Novosibirsk, 630090 Russia

References

  1. Drew Y., Zenke F.T., Curtin N.J. (2025) DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat. Rev. Drug Discov. 24, 19–39.
  2. Zakharenko A.L., Luzina O.A., Chepanova A.A., Dyrkheeva N.S., Salakhutdinov N.F., Lavrik O.I. (2023) Natural products and their derivatives as inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1. Int. J. Mol. Sci. 24, 5781.
  3. Comeaux E.Q., Van Waardenburg R.C.A.M. (2014) Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab. Rev. 46, 494–507.
  4. Zhang M., Wang Z., Su Y., Yan W., Ouyang Y., Fan Y., Huang Y., Yang H. (2025) TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg. Chem. 154, 108072.
  5. Лузина О.А., Салахутдинов Н.Ф. (2016) Биологическая активность усниновой кислоты и ее производных. Часть 1. Активность в отношении одноклеточных организмов. Биоорганическая химия. 42, 129‒149.
  6. Zakharenko A.L., Luzina O.A., Sokolov D.N., Kaledin V.I., Nikolin V.P., Popova N.A., Patel J., Zakharova O.D., Chepanova A.A., Zafar A., Reynisson J., Leung E., Leung I.K.H., Volcho K.P., Salakhutdinov N.F., Lavrik O.I. (2019) Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topoteсan on in vivo tumor models. Eur. J. Med. Chem. 161, 581–593.
  7. Baell J.B., Holloway G.A. (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740.
  8. Filimonov A.S., Luzina O.A., Salakhutdinov N.F. (2024) Synthesis of novel thiazoles based on (+)-usnic acid. Molbank. 2024, M1894.
  9. Kamal M., Jawaid T., Dar U.A., Shah S.A. (2021) Amide as a potential pharmacophore for drug designing of novel anticonvulsant compounds. In: Chemistry of Biologically Potent Natural Products and Synthetic Compounds. Eds Shahid-ul-Islam & J. A. Banday, Chapter 11, 319–342.
  10. Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63.
  11. Bugnon M., Röhrig U.F., Goullieux M., Perez M.A.S., Daina A., Michielin O., Zoete V. (2024) SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 52(W1), W324–W332.
  12. Lountos G.T., Zhao X.Z., Kiselev E., Tropea J.E., Needle D., Pommier Y., Burke T.R., Waugh D.S. (2019) Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening. Nucleic Acids Res. 47, 10134–10150.
  13. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.
  14. Röhrig U.F., Goullieux M., Bugnon M., Zoete V. (2023) Attracting Cavities 2.0: improving the flexibility and robustness for small-molecule docking. J. Chem. Inf. Model. 63, 3925–3940.
  15. Meng E.C., Goddard T.D., Pettersen E.F., Couch G.S., Pearson Z.J., Morris J.H., Ferrin T.E. (2023) UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792.
  16. Bouysset C., Fiorucci S. (2021) ProLIF: a library to encode molecular interactions as fingerprints. J. Cheminform. 13, 72.
  17. Yang M., Bo Z., Xu T., Xu B., Wang D., Zheng H. (2023) Uni-GBSA: an open-source and web-based automatic workflow to perform MM/GB(PB)SA calculations for virtual screening. Brief. Bioinform. 24, bbad218.
  18. Filimonov A.S., Chepanova A.A., Luzina O.A., Zakharenko A.L., Zakharova O.D., Ilina E.S., Dyrkheeva N.S., Kuprushkin M.S., Kolotaev A.V., Khachatryan D.S., Patel J., Leung I.K.H., Chand R., Ayine-Tora D.M., Reynisson J., Volcho K.P., Salakhutdinov N.F., Lavrik O.I. (2019) New hydra- zinothiazole derivatives of usnic acid as potent Tdp1 inhibitors. Molecules. 24(20), 3711.
  19. Kornienko T.E., Chepanova A.A., Zakharenko A.L., Filimonov A.S., Luzina O.A., Dyrkheeva N.S., Nikolin V.P., Popova N.A., Salakhutdinov N.F., Lavrik O.I. (2024) Enhancement of the antitumor and antimetastatic effect of topotecan and normalization of blood counts in mice with Lewis carcinoma by Tdp1 inhibitors – new usnic acid derivatives. Int. J. Mol. Sci. 25(2), 1210.
  20. Khomenko T., Zakharenko A., Odarchenko T., Arabshahi H.J., Sannikova V., Zakharova O., Korchagina D., Reynisson J., Volcho K., Salakhutdinov N., Lavrik O. (2016) New inhibitors of tyrosyl-DNA phosphodiesterase I (Tdp 1) combining 7-hydroxycoumarin and monoterpenoid moieties. Bioorg. Med. Chem. 24, 5573–5581.
  21. Zakharenko A., Luzina O., Koval O., Nilov D., Gushchina I., Dyrkheeva N., Švedas V., Salakhutdinov N., Lavrik O. (2016) Tyrosyl-DNA phosphodiesterase 1 inhibitors: usnic acid enamines enhance the cytotoxic effect of camptothecin. J. Nat. Prod. 79, 2961–2967.
  22. Ivankin D.I., Dyrkheeva N.S., Zakharenko A.L., Ilina E.S., Zarkov T.O., Reynisson J., Luzina O.A., Volcho K.P., Salakhutdinov N.F., Lavrik O.I. (2022) Monoterpene substituted thiazolidin-4-ones as novel TDP1 inhibitors: synthesis, biological evaluation and docking. Bioorg. Med. Chem. Lett. 73, 128909.
  23. Khomenko T.M., Zakharenko A.L., Kornienko T.E., Chepanova A.A., Dyrkheeva N.S., Artemova A.O., Korchagina D.V., Achara C., Curtis A., Reynisson J., Volcho K.P., Salakhutdinov N.F., Lavrik O.I. (2023) New 5-hydroxycoumarin-based tyrosyl-DNA phosphodiesterase I inhibitors sensitize tumor cell line to topotecan. Int. J. Mol. Sci. 24(11), 9155.
  24. Limame R., Wouters A., Pauwels B., Fransen E., Peeters M., Lardon F., De Wever O., Pauwels P. (2012) Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One. 7, e46536.
  25. Kustermann S., Boess F., Buness A., Schmitz M., Watzele M., Weiser T., Singer T., Suter L., Roth A. (2013) A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicol. In Vitro. 27, 1589–1595.
  26. Dyrkheeva N.S., Malakhova A.A., Zakharenko A.L., Okorokova L.S., Shtokalo D.N., Pavlova S.V., Medvedev S.P., Zakian S.M., Nushtaeva A.A., Tupikin A.E., Kabilov M.R., Khodyreva S.N., Luzina O.A., Salakhutdinov N.F., Lavrik O.I. (2023) Transcriptomic analysis of CRISPR/Cas9-mediated PARP1-knockout cells under the influence of Topotecan and TDP1 inhibitor. Int. J. Mol. Sci. 24, 5148.
  27. Davies D.R., Interthal H., Champoux J.J., Hol W.G.J. (2003) Crystal structure of a transition state mimic for Tdp1 assembled from vanadate, DNA, and a topoisomerase I-derived peptide. Chem. Biol. 10, 139–47.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences