Study of physical properties of mycopolymers based on xylotrophic Agaricomycetes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using renewable resources to create polymeric materials is one of the ways to achieve sustainable development goals. The currently used hydrocarbon-based plastics decompose over a long time, accumulating and causing environmental pollution. One way to solve the problem of plastic waste is to develop polymers based on plant materials. Mycopolymers are completely biodegradable polymers consisting of lingo-cellulose particles. Mycelia of xylotrophic basidiomycetes are the binding component. The resulting material can be used as insulation, packaging, or in the manufacture of interior items and furniture. The following xylotrophic agaricomycetes were studied in the work, Pleurotus eryngii, P. ostreatus, Trametes hirsuta, T. versicolor, T. pubescens, T. ochracea, Phellinus igniarius, Fomitopsis pinicola, F. betulina, Ganoderma lucidum, G. applanatum, Fomes fomentarius and two types of substrates based on wood waste Populus tremula and Betula pendula. The most durable mycopolymers were obtained on the basis of Ganoderma applanatum and F. fomentarius.

Texto integral

Acesso é fechado

Sobre autores

D. Popyvanov

Federal Agricultural Research Center of the North-East named after N. V. Rudnitsky; Vyatka State Agrotechnological University

Autor responsável pela correspondência
Email: 1fast@mail.ru
Rússia, Kirov; Kirov

Bibliografia

  1. Abhijith R., Ashok A., Rejeesh C.R. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater. Today Proc. 2018. V. 5 (1) P. 2139–2145. https://doi.org/10.1016/j.matpr.2017.09.211
  2. Alemu D., Tafesse M., Mondal A.K. Mycelium‐based composite: the future sustainable biomaterial. Int. J. Biomaterials. 2022. V. 2022. № . 1. С. 8401528. https://doi.org/10.1155/2022/8401528
  3. Alves R.M.E., Alves M.L., Campos M.J. Morphology and thermal behaviour of new mycelium-based composites with different types of substrates. In: International Conference of progress in digital and physical manufacturing. Springer, Cham, 2019, pp. 189–197.
  4. Appels F.V., Camere S., Montalti M. et al. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Materials and Design. 2019. V. 161. С. 64–71. https://doi.org/10.1016/j.matdes.2018.11.027
  5. Bruscato C., Malvessi E., Brandalise R.N. et al. High performance of macrofungi in the production of mycelium-based biofoams using sawdust-sustainable technology for waste reduction. J. Cleaner Production. 2019. V. 234. P. 225–232. https://doi.org/10.1016/j.jclepro.2019.06.150
  6. Burova L.G. Ecology of macromycete fungi. Nauka, Moscow, 1986. (In Russ.)
  7. Chan C.M., Vandi L.J., Pratt S. et al. Composites of wood and biodegradable thermoplastics: A review. Polymer Rev. 2018. V. 58 (3). P. 444–494. https://doi.org/10.1080/15583724.2017.1380039
  8. Dias P.P., Jayasinghe L.B., Waldmann D. Investigation of mycelium-miscanthus composites as building insulation material. Results in Materials. 2021. V. 10. P. 100189. https://doi.org/10.1016/j.rinma.2021.100189
  9. Du Y.L., Cao Y., Lu F. et al. Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions Polymer Testing. 2008. V. 27. № 8. P. 924–930. https://doi.org/10.1016/j.polymertesting.2008.08.002
  10. Elsacker E., Søndergaard A., Van Wylick A. et al. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials. 2021. Т. 283. P. 122732. https://doi.org/10.1016/j.conbuildmat.2021.122732
  11. Girometta C., Picco A.M., Baiguera R.M. et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability. 2019. V. 11 (1). P. 281. https://doi.org/10.3390/su11010281
  12. Haneef M., Ceseracciu L., Canale C. et al. Advanced materials from fungal mycelium: fabrication and tuning of physical properties Scientific reports. 2017. V. 7 (1). P. 1–11. https://doi.org/10.1038/srep41292
  13. Holt G.A., Mcintyre G., Flagg D. et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts J. Biobased Materials and Bioenergy. 2012. V. 6 (4). С. 431–439. https://doi.org/10.1166/jbmb.2012.1241
  14. Islam M.R., Tudryn G., Bucinell R. et al. Stochastic continuum model for mycelium-based bio-foam. Materials AND Design. 2018. V. 160. P. 549–556. https://doi.org/10.1016/j.matdes.2018.09.046
  15. Jones M., Huynh T., Dekiwadia C. et al. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanosci. 2017. V. 11. P. 241–257. https://doi.org/10.1166/jbns.2017.1440
  16. Kolpakova V.V., Usachev I.S., Sardzhveladze A.S. et al. Improvement of the technology of using thermoplastic starch for biodegradable polymer film. Pishchevaya promyshlennost. 2017. N8. P. 34–38. (In Russ.)
  17. Krutko E.T., Prokopchuk N.R., Globa A.I. Technology of biodegradable polymer materials. Minsk, 2014. (In Russ.)
  18. Lelivelt R.J.J., Lindner G., Teuffel P. et al. The production process and compressive strength of mycelium-based materials. In: First International Conference on bio-based building materials. 22–25 June 2015, Clermont-Ferrand, 2015, pp. 1–6.
  19. López Nava J.A., Méndez González J., Ruelas Chacón X. et al. Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Materials and Manufacturing Processes. 2016. V. 31 (8). P. 1085–1090. https://doi.org/10.1080/10426914.2015.1070420
  20. Pavlovskaya N.E., Gagarina I.N., Gorkova I.V. et al. Optimization of the composition of polymer-starch compositions for the creation of packaging material and containers. Pishchevaya promyshlennost. 2019. N7. P. 8–11. (In Russ.) https://doi.org/10.24411/0235-2486-2019-10098
  21. Pelletier M.G., Holt G.A., Wanjura J.D. et al. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products. 2013. V. 51. P. 480–485. https://doi.org/10.1016/j.indcrop.2013.09.008
  22. Potoroko I. Yu., Malinin A.V., Tsaturov A.V. et al. Biodegradable materials based on plant polysaccharides for food packaging. Part 2: Process management of disposal Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotekhnologii. 2020. V. 8 (4). P. 30–37. (In Russ.) https://doi.org/10.14529/food200404
  23. Soh E., Chew Z.Y., Saeidi N. et al. Development of an extrudable paste to build mycelium-bound composites Materials and Design. 2020. V. 195. V. 109058. https://doi.org/10.1016/j.matdes.2020.109058
  24. Sun W., Tajvidi M., Howell C. et al. Functionality of surface mycelium interfaces in wood bonding. ACS Applied Materials and Interfaces. 2020. V. 12 (51). P. 57431–57440. https://dx.doi.org/10.1021/acsami.0c18165
  25. Sysuev V.A., Shirokikh I.G., Shirokikh A.A. et al. Fungi as a culture of agricultural production Agrarnaya nauka Evro-Severo-Vostoka. 2018. V. 62 (1). P. 4–10. (In Russ.) https://doi.org/10.30766/2072-9081.2018.62.1.04-10
  26. Tacer-Caba Z., Varis J.J., Lankinen P. et al. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials and Design. 2020. V. 192. P. 108728. https://doi.org/10.1016/j.matdes.2020.108728
  27. Yang Z., Zhang F., Still B. et al. Physical and mechanical properties of fungal mycelium-based biofoam J. Materials Civil Engineering. 2017. V. 29 (7). С. 04017030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001866
  28. Бурова Л.Г. (Burova) Экология грибов макромицетов. М.: Наука, 1986. 224 с.
  29. Колпакова В.В., Усачев И.С., Сарджвеладзе А.С. и др. (Kolpakova et al.) Совершенствование технологии применения термопластичного крахмала для биоразлагаемой полимерной пленки // Пищевая промышленность. 2017. № 8. С. 34–38.
  30. Крутько Э.Т., Прокопчук Н.Р., Глоба А.И. (Krutko et al.) Технология биоразлагаемых полимерных материалов. Минск: Изд-во БГТУ, 2014. 105 с.
  31. Павловская Н.Е., Гагарина И.Н., Горькова И.В. и др. (Pavlovskaya et al.) Оптимизация состава полимер-крахмальных композиций для создания упаковочного материала и тары // Пищевая промышленность. 2019. № 7. С. 8–11.
  32. Потороко И.Ю., Малинин А.В., Цатуров А.В. и др. (Potoroko et al.) Биоразлагаемые материалы на основе растительных полисахаридов для упаковки пищевых продуктов. Часть 2: Управление процессами утилизации // Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2020. Т. 8. № 4. С. 30–37. https://doi.org/10.14529/food200404
  33. Сысуев В.А., Широких И.Г., Широких А.А. и др. (Sysuev et al.) Грибы как культура сельскохозяйственного производства // Аграрная наука Евро-Северо-Востока. 2018. Т. 62. № 1. С. 4–10.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Polypropylene bags inoculated with liquid mycelium of agaricomycetes with a substrate based on aspen and birch sawdust.

Baixar (291KB)
3. Fig. 2. Re-overgrowing of the substrate with mycelium in the required forms: a – removing the overgrown substrate from the polypropylene bag; b – substrate re-overgrown with mycelium of the required form.

Baixar (149KB)
4. Fig. 3. Experimental samples of mycopolymers obtained on two substrates with different compositions.

Baixar (586KB)
5. Fig. 4. Thermal conductivity of mycopolymers and some traditionally used polymeric materials.

Baixar (65KB)
6. Fig. 5. Density of mycopolymers and some traditionally used building materials.

Baixar (100KB)
7. Fig. 6. Graph of the dynamics of the dependence of mycopolymer compression on pressure: 1 – mycopolymer from a substrate based on aspen sawdust; 2 – mycopolymer from a substrate based on birch sawdust. The length of the lines corresponds to reaching 10% linear deformation.

Baixar (229KB)
8. Fig. 7. Compressive strength at 10% linear deformation of mycopolymers and synthetic building materials: 1 – mycopolymer from a substrate based on aspen sawdust; 2 – mycopolymer from a substrate based on birch sawdust.

Baixar (114KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025