Статистика солнечных джетов ВУФ-диапазона

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Струеобразные выбросы вещества, иначе называемые джетами, в большом количестве наблюдаются в хромосфере и нижней короне, и представляют значительный интерес с точки зрения их возможной роли в переносе вещества и энергии в атмосфере Солнца. При этом наблюдается несколько групп солнечных джетов, вероятно, имеющих различный механизм формирования и существенно различающихся по своим характеристикам. С целью выделения отдельных групп джетов и отождествления их с различными физическими механизмами, в настоящей работе проводится статистическое исследование полного ансамбля джетов, наблюдаемых в диапазоне вакуумного ультрафиолета (ВУФ) при помощи Обсерватории Солнечной Динамки (SDO) в каналах 171, 193 и 304 Å. Всего было зарегистрировано 212 событий, из которых 26 % отнесены к подмножеству линейных джетов, с вероятным механизмом ускорения магнитоакустическими ударными волнами, и 30 % – к подмножеству спиральных, представляющих собой выбросы мелкомасштабных филаментов. Показано, что указанные группы джетов существенно различаются по своим основным динамическим характеристикам (высота подъёма, начальная скорость движения и время жизни), а также по ширине, связанной с исходной структурой магнитного поля; при этом спиральные джеты также значительно чаще ассоциированы с наличием горячей корональной компоненты. В то же время, обнаруживается третий класс джетов, имеющий промежуточные характеристики, механизм формирования которых остаётся неясным и требует дальнейшего изучения.

Полный текст

Доступ закрыт

Об авторах

И. П. Лобода

Институт космических исследований Российской академии наук

Автор, ответственный за переписку.
Email: ivan.loboda@cosmos.ru
Россия, Москва

С. А. Богачёв

Институт космических исследований Российской академии наук

Email: ivan.loboda@cosmos.ru
Россия, Москва

А. С. Кириченко

Институт космических исследований Российской академии наук

Email: ivan.loboda@cosmos.ru
Россия, Москва

А. А. Рева

Институт космических исследований Российской академии наук

Email: ivan.loboda@cosmos.ru
Россия, Москва

А. С. Ульянов

Институт космических исследований Российской академии наук

Email: ivan.loboda@cosmos.ru
Россия, Москва

Список литературы

  1. Shen Y. Observation and modelling of solar jets // Proc. the Royal Society A. 2021. V. 477. Iss. 2246. Art.ID20200217. https://doi.org/10.1098/rspa.2020.0217.
  2. De Pontieu B., McIntosh S.W., Carlsson M. et al. The origins of hot plasma in the solar corona // Science. 2011. V. 331. Iss. 6013. P. 55–58. https://doi.org/10.1126/science.1197738.
  3. Loboda I.P., Bogachev S.A. Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations // Astron. Astrophys. 2017. V. 597. Iss A78.0. P. 1963–1980. https://doi.org/10.1051/0004-6361/201527559.
  4. Wang H. Comparison of Hα and He II λ304 Macrospicules // The Astrophysical J. 1998. V. 509. Iss. 1. Art.ID461. https://doi.org/10.1086/306497.
  5. Skogsrud H., Rouppe van der Voort L., De Pontieu B. et al. On the temporal evolution of spicules observed with IRIS, SDO, and Hinode // The Astrophysical J. 2015. V. 806. Iss. 2. Art.ID170. https://doi.org/10.1088/0004-637X/806/2/170.
  6. Sterling A.C. Solar spicules: a review of recent models and targets for future observations // Solar Physics. 2000. V. 196. P. 79–111. https://doi.org/10.1023/A:1005213923962.
  7. De Pontieu B., McIntosh S., Hansteen V.H. et al. A tale of two spicules: the impact of spicules on the magnetic chromosphere // Publications of the Astronomical Society of Japan. 2007. V. 59. Iss. sp3. P. S655-S652. https://doi.org/10.1093/pasj/59.sp3.S655.
  8. Pereira T.M.D., De Pontieu B., Carlsson M. Quantifying spicules // The Astrophysical J. 2012. V. 759. Iss. 1. Art.ID18. https://doi.org/10.1088/0004-637X/759/1/18.
  9. Raouafi N.E., Patsourakos S., Pariat E. et al. Solar coronal jets: observations, theory, and modeling // Space Science Reviews. 2016. V. 201. Art.ID1–53. https://doi.org/10.1007/s11214-016-0260-5.
  10. Moore R.L., Cirtain J.W., Sterling A.C. et al. Dichotomy of solar coronal jets: standard jets and blowout jets // The Astrophysical J. 2010. V. 720. Iss. 1. Art.ID757. https://doi.org/10.1088/0004-637X/720/1/757.
  11. Moore R.L., Sterling A.C., Falconer D.A. et al. The cool component and the dichotomy, lateral expansion, and axial rotation of solar X-ray jets // The Astrophysical J. 2013. V. 769. Iss. 2. Art.ID134. https://doi.org/10.1088/0004–637X/769/2/134.
  12. Bohlin J.D., Vogel S.N., Purcell J.D. et al. A newly observed solar feature-Macrospicules in He II 304 A // Astrophysical J. 1975. V. 197. Pt. 2. P. L133–L135. https://doi.org/10.1086/181794.
  13. Pereira T.M.D., De Pontieu B., Carlsson M. et al. An interface region imaging spectrograph first view on solar spicules // The Astrophysical J. Letters. 2014. V. 792. Iss. 1. Art.ID L15. https://doi.org/10.1088/2041–8205/792/1/L15.
  14. Loboda I.P., Bogachev S.A. What is a Macrospicule? // Astrophys. J. 2019. V. 871. Iss. 2. Art.ID230. https://doi.org/10.3847/1538–4357/aafa7a.
  15. Loboda I.P., Bogachev S.A. A statistical study of linear jets in the low solar corona // Astronomical and Astrophysical Transactions. 2019. V. 31. Iss. 2. P. 199–208.
  16. Bennett S.M., Erdélyi R. On the statistics of macrospicules // The Astrophysical J. 2015. V. 808. Iss. 2. Art.ID135. https://doi.org/10.1088/0004-637X/808/2/135.
  17. Kiss T.S., Gyenge N., Erdélyi R. Systematic variations of macrospicule properties observed by SDO/AIA over half a decade // The Astrophysical J. 2017. V. 835. Iss. 1. Art.ID47. https://doi.org/10.3847/1538-4357/aa5272.
  18. Lemen J.R., Title A.M., Akin D.J. et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO) // Solar Physics. 2012. V. 275. P. 17–40. https://doi.org/10.1007/s11207-011-9776-8.
  19. Loboda I., Reva A., Bogachev S. et al. Separating He II and Si XI Emission Components in Off-limb 304 Å Observations // Solar Physics. 2023. V. 298. Iss. 11. Art.ID136. https://doi.org/10.1007/s11207-023-02230-6.
  20. Boerner P.F., Testa P., Warren H. et al. Photometric and thermal cross-calibration of solar EUV instruments // Solar Physics. 2014. V. 289. P. 2377–2397. https://doi.org/10.1007/s11207-013-0452-z.
  21. Bogachev S.A., Loboda I.P., Reva A.A. et al. Difference in the Characteristics of Solar Macrospicules at Low and High Latitudes // Astron. Lett. 2022. V. 48. Iss. 1. P. 47–54. https://doi.org/10.1134/S1063773722010029.
  22. Loboda I.P., Bogachev S.A. Quiescent and eruptive prominences at solar minimum: a statistical study via an automated tracking system // Solar Physics. 2015. V. 29. https://doi.org/10.1007/s11207-015-0735-7.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Различие основных типов солнечных джетов по высоте подъема и времени жизни

Скачать (76KB)
3. Рис. 2. Пример наблюдений джета-выброса, сформированного эрупцией минифиламента, в каналах 304 Å (а), 171 Å (б) и 193 Å (в) SDO/AIA. В каналах 171 и 193 Å (б, в) видно движение холодного вещества минифиламента на начальной стадии движения джета, в то время как в канале 193 Å (в) одновременно виден выброс горячего коронального вещества

Скачать (618KB)
4. Рис. 3. Распределение основных измеренных характеристик солнечных джетов ВУФ-диапазона. Отдельно показаны джеты, зарегистрированные в областях спокойного солнца и в корональных дырах (а, б), линейные и спиральные джеты (в–ж) и джеты, имевшие заметное поглощение или излучение в каналах 171 и 193 Å (з–к)

5. Рис. 4. Наиболее сильные корреляции измеренных характеристик джетов. Цветом показаны года наблюдения. Штриховыми линиями показаны линейные аппроксимации вместе с соответствующими значениями коэффициента корреляции

Скачать (637KB)
6. Рис. 5. Взаимозависимость времени жизни и масштаба, выраженного средней гравитационной энергией, для протуберанцев и джетов-выбросов (а), а также для различных групп джетов (б). Штриховыми линиями показаны линейные аппроксимации: красным – для джетов-выбросов, черным – для протуберанцев (а) и всех видов ВУФ-джетов (б)

Скачать (274KB)

© Российская академия наук, 2025