Метилирование ДНК при аневризме аорты различной локализации
- Авторы: Кучер А.Н.1, Шипулина С.А.1, Гончарова И.А.1, Назаренко М.С.1
-
Учреждения:
- Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
- Выпуск: Том 60, № 6 (2024)
- Страницы: 3-21
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjsocmed.com/0016-6758/article/view/667242
- DOI: https://doi.org/10.31857/S0016675824060018
- EDN: https://elibrary.ru/BYFOJE
- ID: 667242
Цитировать
Аннотация
Аневризма аорты (АА) – жизнеугрожающее патологическое состояние, осложнение которого в виде разрыва аорты в отсутствие экстренного хирургического вмешательства приводит к летальному исходу. В развитие АА вносят вклад генетические (чаще при торакальной АА – ТАА) и средовые (при ТАА и абдоминальной АА – ААА) факторы. В настоящем обзоре обобщены данные научных публикаций, посвященных изучению метилирования ДНК при воздействии факторов риска АА, а также в клетках различных отделов аорты (грудной, брюшной) в норме и при патологических состояниях. Изменение метилирования ДНК наблюдается в клетках аорты и/или крови при наличии факторов риска АА (артериальная гипертензия, курение, возраст, наличие сопутствующих заболеваний). Исследования метилирования ДНК при ТАА и ААА немногочисленны, проводились с использованием различных подходов к формированию выборок, выбору образцов клеток и экспериментальных методов. Однако они убедительно свидетельствуют об измененном статусе метилирования ДНК генов, выбранных для исследования с использованием кандидатного подхода (при исследовании ААА), а также различных регионов генома при проведении широкогеномного анализа метилирования ДНК (преимущественно при исследовании ТАА). Гены, локализованные в дифференциально-метилированных регионах, связаны с функционированием сердечно-сосудистой системы, вовлечены в клеточные и метаболические процессы, патогенетически значимые для развития АА. В ряде случаев установлена связь уровней метилирования ДНК с клиническими параметрами при АА. Эти результаты указывают на перспективность расширения исследований метилирования ДНК при АА, в том числе и с целью выявления новых патогенетически значимых звеньев при развитии АА.
Ключевые слова
Полный текст

Об авторах
А. Н. Кучер
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Email: maria.nazarenko@medgenetics.ru
Россия, Томск 634050
С. А. Шипулина
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Email: maria.nazarenko@medgenetics.ru
Россия, Томск 634050
И. А. Гончарова
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Email: maria.nazarenko@medgenetics.ru
Россия, Томск 634050
М. С. Назаренко
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Автор, ответственный за переписку.
Email: maria.nazarenko@medgenetics.ru
Россия, Томск 634050
Список литературы
- Mangum K.D., Farber M.A. Genetic and epigenetic regulation of abdominal aortic aneurysms // Clin. Genet. 2020. V. 97. № 6. P. 815–826. https://doi.org/10.1111/cge.13705
- Gouveia E Melo R., Silva Duarte G., Lopes A. et al. Incidence and prevalence of thoracic aortic aneurysms: A systematic review and meta-analysis of population-based studies // Semin. Thorac. Cardiovasc. Surg. 2022. V. 34. № 1. P. 1–16. https://doi.org/10.1016/j.jvs.2021.08.080
- Tomee S.M., Bulder R.M.A., Meijer C.A. et al. Excess mortality for abdominal aortic aneurysms and the potential of strict implementation of cardiovascular risk management: A multifaceted study integrating meta-analysis, National Registry, and PHAST and TEDY Trial Data // Eur. J. Vasc. Endovasc. Surg. 2023. V. 65. № 3. P. 348–357. https://doi.org/10.1016/j.ejvs.2022.11.019
- Isselbacher E.M., Preventza O., Hamilton Black J. 3rd et al. ACC/AHA Guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines // Circulation. 2022. V. 146. № 24. P. e334–e482. https://doi.org/10.1161/CIR.0000000000001106
- Ying A.J., Affan E.T. Abdominal aortic aneurysm screening: A systematic review and meta-analysis of efficacy and cost // Ann. Vasc. Surg. 2019. V. 4. P. 298–303.e3. https://doi.org/10.1016/j.avsg.2018.05.044
- Qian G., Adeyanju O., Olajuyin A., Guo X. Abdominal aortic aneurysm formation with a focus on vascular smooth muscle cells // Life (Basel). 2022. V. 12. № 2. P. 191. https://doi.org/10.3390/life12020191
- Zhou Z., Cecchi A.C., Prakash S.K., Milewicz D.M. Risk factors for thoracic aortic dissection // Genes (Basel). 2022. V. 13. № 10. https://doi.org/10.3390/genes13101814
- Gao J., Cao H., Hu G. et al. The mechanism and therapy of aortic aneurysms // Signal Transduct. Target. Ther. 2023. V. 8. № 1. P. 55. https://doi.org/10.1038/s41392-023-01325-7
- Duarte V.E., Yousefzai R., Singh M.N. Genetically triggered thoracic aortic disease: Who should be tested? // Methodist Debakey Cardiovasc. J. 2023. V. 19. № 2. P. 24–28. https://doi.org/10.14797/mdcvj.1218
- van de Luijtgaarden K.M., Heijsman D., Maugeri A. et al. First genetic analysis of aneurysm genes in familial and sporadic abdominal aortic aneurysm // Hum. Genet. 2015. V. 134. № 8. P. 881–893. https://doi.org/10.1007/s00439-015-1567-0
- Gyftopoulos A., Ziganshin B.A., Elefteriades J.A., Ochoa Chaar C.I. Comparison of genes associated with thoracic and abdominal aortic aneurysms // Aorta (Stamford). 2023. V. 11. № 3. P. 125–134. https://doi.org/10.1055/s-0043-57266
- Lino Cardenas C.L., Kessinger C.W., Cheng Y. et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm // Nat. Commun. 2018. V. 9. № 1. P. 1009. https://doi.org/10.1038/s41467-018-03394-7
- Lino Cardenas C.L., Kessinger C.W., MacDonald C. et al. Inhibition of the methyltranferase EZH2 improves aortic performance in experimental thoracic aortic aneurysm // JCI Insight. 2018. V. 3. № 5. https://doi.org/10.1172/jci.insight.97493
- Portelli S.S., Robertson E.N., Malecki C. et al. Epigenetic influences on genetically triggered thoracic aortic aneurysm // Biophys. Rev. 2018. V. 10. № 5. P. 1241–1256. https://doi.org/10.1007/s12551-018-0460-1
- Chang Z., Zhao G., Zhao Y. et al. BAF60a deficiency in vascular smooth muscle cells prevents abdominal aortic aneurysm by reducing inflammation and extracellular matrix degradation // Arterioscler. Thromb. Vasc. Biol. 2020. V. 40. № 10. P. 2494–2507. https://doi.org/10.1161/ATVBAHA.120.314955
- Tasopoulou K.M., Argiriou C., Tsaroucha A.K., Georgiadis G.S. Circulating miRNAs as biomarkers for diagnosis, surveillance, and postoperative follow-up of abdominal aortic aneurysms // Ann. Vasc. Surg. 2023. V. 93. P. 387–404. https://doi.org/10.1016/j.avsg.2023.02.029
- Zhang X., Liu S., Weng X. et al. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice // J. Mol. Cell. Cardiol. 2018. V. 125. P. 6–17. https://doi.org/10.1016/j.yjmcc.2018.10.012
- Krishna S.M., Dear A.E., Norman P.E., Golledge J. Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm // Atherosclerosis. 2010. V. 212. № 1. P. 16–29. https://doi.org/10.1016/j.atherosclerosis.2010.02.008.
- Han Y., Tanios F., Reeps C. et al. Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm // Clin. Epigenetics. 2016. V. 8. P. 3. https://doi.org/10.1186/s13148-016-0169-6
- Jiang H., Xia Q., Xin S. et al. Abnormal epigenetic modifications in peripheral T cells from patients with abdominal aortic aneurysm are correlated with disease development // J. Vasc. Res. 2015. V. 52. № 6. P. 404–413. https://doi.org/10.1159/000445771
- Toghill B.J., Saratzis A., Freeman P.J. et al. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells // Clin. Epigenetics. 2018. V. 1. P. 29. https://doi.10.1186/s13148-018-0460-9
- D’Amico F., Doldo E., Pisano C. et al. Specific miRNA and gene deregulation characterize the increased angiogenic remodeling of thoracic aneurysmatic aortopathy in Marfan syndrome // Int. J. Mol. Sci. 2020. V. 21. № 18. https://doi.org/10.3390/ijms21186886
- Greenway J., Gilreath N., Patel S. et al. Profiling of histone modifications reveals epigenomic dynamics during abdominal aortic aneurysm formation in mouse models // Front. Cardiovasc. Med. 2020. V. 7. https://doi.org/10.3389/fcvm.2020.595011
- Mangum K., Gallagher K., Davis F.M. The role of epigenetic modifications in abdominal aortic aneurysm pathogenesis // Biomolecules. 2022. V. 12. № 2. https://doi.org/10.3390/biom12020172
- Rombouts K.B., van Merrienboer T.A.R., Ket J.C.F. et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections // Eur. J. Clin. Invest. 2022. V. 52. № 4. https://doi.org/10.1111/eci.13697
- Eilenberg W., Zagrapan B., Bleichert S. et al. Histone citrullination as a novel biomarker and target to inhibit progression of abdominal aortic aneurysms // Transl. Res. 2021. V. 233. P. 32–46. https://doi.org/10.1016/j.trsl.2021.02.003
- Bararu Bojan Bararu I., Pleșoianu C.E., Badulescu O.V. et al. Molecular and cellular mechanisms involved in aortic wall aneurysm development // Diagnostics (Basel, Switzerland). 2023. V. 13. V. 2. https://doi.org/10.3390/diagnostics13020253
- Quintana R.A., Taylor W.R. Cellular mechanisms of aortic aneurysm formation // Circ. Res. 2019. V. 124. № 4. P. 607–618. https://doi.org/10.1161/CIRCRESAHA.118.313187
- Mishra S., Raval M., Kachhawaha A.S. et al. Aging: Epigenetic modifications // Prog. Mol. Biol. Transl. Sci. 2013. V. 197. P. 171–209. https://doi.org/10.1016/bs.pmbts.2023.02.002
- Wang X., Falkner B., Zhu H. et al. A genome-wide methylation study on essential hypertension in young African American males // PLoS OnE. 2013. V. 8. P. 451. https://doi.org/10.1371/journal.pone.0053938
- Wise I.A., Charchar F.J. Epigenetic modifications in essential hypertension // Int. J. Mol. Sci. 2016. V. 17. № 4. https://doi.org/10.3390/ijms17040451
- Кучер А.Н., Назаренко М.С., Марков А.В. и др. Вариабельность профилей метилирования CpG-сайтов генов микроРНК в лейкоцитах и тканях сосудов при атеросклерозе у человека // Биохимия. 2017. Т. 82. № 6. С. 923–933.)
- Liu P., Zhang J., Du D. et al. Altered DNA methylation pattern reveals epigenetic regulation of Hox genes in thoracic aortic dissection and serves as a biomarker in disease diagnosis // Clin. Epigenetics. 2021. V. 13. № 1. P. 124. https://doi.org/10.1186/s13148-021-01110-9
- Dai Y., Chen D., Xu T. DNA methylation aberrant in atherosclerosis // Front. Pharmacol. 2022. V. 13.. https://doi.org/10.3389/fphar.2022.815977
- Liu S., Li Y., Wei X. et al. Genetic analysis of DNA methylation in dyslipidemia: a case-control study // PeerJ. 2022. V. 10. https://doi.org/10.7717/peerj.14590
- Chu D.T., Bui N.L., Vu Thi H. et al. Role of DNA methylation in diabetes and obesity // Prog. Mol. Biol. Transl. Sci. 2023. V. 197. P. 153–170. https://doi.org/10.1016/bs.pmbts.2023.01.008
- da Silva Rodrigues G., Noronha N.Y., Almeida M.L. et al. Exercise training modifies the whole blood DNA methylation profile in middle-aged and older women // J. Appl. Physiol. (1985). 2023. V. 134. № 3. P. 610–621. https://doi.org/10.1152/japplphysiol.00237.2022
- Krolevets M., Cate V.T., Prochaska J.H. et al. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites // Clin. Epigenetics. 2023. V. 15. № 1 P. 56. https://doi.org/10.1186/s13148-023-01468-y
- Smolarek I., Wyszko E., Barciszewska A.M. et al. Global DNA methylation changes in blood of patients with essential hypertension // Med. Sci. Monit. 2010. V. 16. № 3. P. CR149–CR155.
- Kato N., Loh M., Takeuchi F. et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation // Nat. Genet. 2015. V. 47. № 11. P. 1282–1293. https://doi.org/10.1038/ng.3405
- Zhang Y., Mei J., Li J. et al. DNA Methylation in Atherosclerosis: A new perspective // Evid. Based Complement. Alternat. Med. 2021. V. 2021. https://doi.org/10.1155/2021/6623657
- Chen Y., Liang L., Wu C. et al. Epigenetic control of vascular smooth muscle cell function in atherosclerosis: A role for DNA methylation // DNA Cell Biol. 2022. V. 41. № 9. P. 824–837. https://doi.org/10.1089/dna.2022.0278
- Пальцева Е.М. Аневризмы аорты: этиология и патоморфология // Мол. медицина. 2015. Т. 4. С., 3–10.)
- Кучер А.Н., Назаренко М.С. Роль микро-РНК при атерогенезе // Кардиология. 2017. V. 57. № 9. P. 65–76. https://doi.org/10.18087/cardio.2017.9.10022)
- Bell C.G., Xia Y., Yuan W. et al. Novel regional age-associated DNA methylation changes within human common disease-associated loci // Genome Biol. 2016. V. 17. № 1. P. 193. https://doi.org/10.1186/s13059-016-1051-8
- Balint B., Bernstorff I.G.L., Schwab T., Schäfers H.J. Age-dependent phenotypic modulation of smooth muscle cells in the normal ascending aorta // Front. Cardiovasc Med. 2023. V. 10. https://doi.org/10.3389/fcvm.2023.1114355.
- Wang Z., Zhao J., Sun J. et al. Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation // Neurosci. Lett. 2016. V. 621. P. 47–53. https://doi.org/10.1016/j.neulet.2016.04.016
- Fragou D., Pakkidi E., Aschner M. et al. Smoking and DNA methylation: Correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure // Food Chem. Toxicol. 2019. V. 129. P. 312–327. https://doi.org/10.1016/j.fct.2019.04.059
- Forte A., Galderisi U., Cipollaro M. et al. Epigenetic regulation of TGF-β1 signalling in dilative aortopathy of the thoracic ascending aorta // Clin. Sci. (Lond). 2016. V. 130. № 16. P. 1389–1405. https://doi.org/10.1042/CS20160222
- Davis F.M., Gallagher K.A. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease // Arterioscler. Thromb. Vasc. Biol. 2019. V. 39. № 4. P. 623–634. https://doi.org/10.1161/ATVBAHA.118.312135
- Davis F.M., Tsoi L.C., Melvin W.J. et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms // J. Exp. Med. 2021. V. 218. № 6. https://doi. org/10.1084/jem.20201839
- Zhao G., Zhao Y., Lu H. et al. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis // J. Clin. Invest. 2022. V. 132. № 21. https://doi.org/10.1172/JCI158309
- Shah A.A., Gregory S.G., Krupp D. et al. Epigenetic profiling identifies novel genes for ascending aortic aneurysm formation with bicuspid aortic valves // Heart Surg. Forum. 2015. V. 18. № 4. P. E134–E139. https://doi.org/10.1532/hsf.1247
- Matsumura H., Nakano Y., Ochi H. et al. H558R, a common SCN5A polymorphism, modifies the clinical phenotype of Brugada syndrome by modulating DNA methylation of SCN5A promoters // J. Biomed. Sci. 2017. V. 24. № 1. P. 91. https://doi.org/10.1186/s12929-017-0397-x
- Pan S., Lai H., Shen Y. et al. DNA methylome analysis reveals distinct epigenetic patterns of ascending aortic dissection and bicuspid aortic valve // Cardiovasc Res. 2017. V. 113. № 6. P. 692–704. https://doi.org/10.1093/cvr/cvx050
- Björck H.M., Du L., Pulignani S. et al. Altered DNA methylation indicates an oscillatory flow mediated epithelial-to-mesenchymal transition signature in ascending aorta of patients with bicuspid aortic valve // Sci. Rep. 2018. V. 8. № 1. P. 2777. https://doi.org/10.1038/s41598-018-20642-4
- Lian R., Zhang G., Yan S. et al. Identification of molecular regulatory features and markers for acute type A aortic dissection // Comput. Math. Methods. Med. 2021. V. 2021. https://doi.org/10.1155/2021/6697848
- Chen Y., Xu X., Chen Z. et al. DNA methylation alternation in Stanford A acute aortic dissection /BMC Cardiovasc. Disord. 2022. V. 22. № 1. P. 455. https://doi.org/10.1186/s12872-022-02882-5
- Ryer E.J., Ronning K.E., Erdman R. et al. The potential role of DNA methylation in abdominal aortic aneurysms // Int. J. Mol. Sci. 2015. V. 16. № 5. P. 11259–11275. https://doi.org/10.3390/ijms160511259
- Krishna S.M., Seto S.W., Jose R.J. et al. Wnt signaling pathway inhibitor sclerostin inhibits angiotensin II-induced aortic aneurysm and atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2017. V. 37. № 3. P. 553–566. https://doi.org/10.1161/ATVBAHA.116.308723
- Xia Q., Zhang J., Han Y. et al. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm // FEBS Open Bio. 2019. V. 9. № 6. P. 1137–1143. https://doi.org/10.1002/2211-5463.12643
- Zhong L., He X., Si X. et al. SM22α (Smooth Muscle 22α) prevents aortic aneurysm formation by inhibiting smooth muscle cell phenotypic switching through suppressing reactive oxygen species/NF-κB (Nuclear Factor-κB) // Arterioscler. Thromb. Vasc. Biol. 2019. V. 39. № 1. P. e10–e25. https://doi.org/10.1161/ATVBAHA.118.311917
- Skorvanova M., Matakova T., Skerenova M. et al. Methylation of MMP2, TIMP2, MMP9 and TIMP1 in abdominal aortic aneurysm // Bratisl. Lek. Listy. 2020. V. 121. № 10. P. 717–721. https://doi.org/10.4149/BLL_2020_117
- Vats S., Sundquist K., Wang X. et al. Associations of global DNA methylation and homocysteine levels with abdominal aortic aneurysm: A cohort study from a population-based screening program in Sweden // Int. J. Cardiol. 2020. V. 321. P. 137–142. https://doi.org/10.1016/j.ijcard.2020.06.022
- Simões G., Pereira T., Caseiro A. Matrix metaloproteinases in vascular pathology // Microvasc. Res. 2022. V. 143. https://doi.org/10.1016/j.mvr.2022.104398
- Stepien K.L., Bajdak-Rusinek K., Fus-Kujawa A. et al. Role of extracellular matrix and inflammation in abdominal aortic aneurysm // Int. J. Mol. Sci. 2022. V. 23. № 19. https://doi.org/10.3390/ijms231911078
- Doppler C., Messner B., Mimler T. et al. Noncanonical atherosclerosis as the driving force in tricuspid aortic valve associated aneurysms - A trace collection // J. Lipid Res. 2023. V. 64. № 3. https://doi.org/10.1016/j.jlr.2023.100338
- Maleki S., Kjellqvist S., Paloschi V. et al. Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/srep35712
- Narayanan N., Tyagi N., Shah A. et al. Hyperhomocysteinemia during aortic aneurysm: a plausible role of epigenetics // Int. J. Physiol. Pathophysiol. Pharmacol. 2013. V. 5. № 1. P. 32–42.
- Takada S., Berezikov E., Choi Y.L. et al. Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos // RNA. 2009. V. 15. P. 1507–1514. https://doi.org/10.1261/rna.1418309
- Chen K.C., Wang Y.S., Hu C.Y. et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: A novel mechanism for cardiovascular diseases // FASEB J. 2011. V. 25. № 5. P. 1718–1728. https://doi.org/10.1096/fj.10-174904
- Rabkin S.W. The role matrix metalloproteinases in the production of aortic aneurysm // Prog. Mol. Biol. Transl Sci. 2017. V. 147. P. 239–265. https://doi.org/10.1016/bs.pmbts.2017.02.002
- Li T., Jiang B., Li X. et al. Serum matrix metalloproteinase-9 is a valuable biomarker for identification of abdominal and thoracic aortic aneurysm: a case-control study // BMC Cardiovasc. Disord. 2018. V. 18. № 1. P. 202. https://doi.org/10.1186/s12872-018-0931-0
- Shafeeque C.M., Sathyan S., Saradalekshmi K.R. et al. Methylation map genes can be critical in determining the methylome of intracranial aneurysm patients // Epigenomics. 2020. V. 12. № 10. P. 859–871. https://doi.org/10.2217/epi-2019-0280
- Galán M., Varona S., Orriols M. et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors // Dis. Model. Mech. 2016. V. 9. № 5. P. 541–552. https://doi.org/10.1242/dmm.024513
- Iyer V., Rowbotham S., Biros E. et al. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms // Atherosclerosis. 2017. V. 261. P. 78–89. https://doi.10.1016/j.atherosclerosis.2017.03.010
- Li Y., Maegdefessel L. Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression // Front. Physiol. 2017. V. 8. https://doi.org/10.3389/fphys.2017.00429
- Zalewski D.P., Ruszel K.P., Stępniewski A. et al. Dysregulation of microRNA modulatory network in abdominal aortic aneurysm // J. Clin. Med. 2020. V. 9. № 6. P. 1974. https://doi.org/10.3390/jcm9061974
- Xu Y., Yang S., Xue G. The role of long non-coding RNA in abdominal aortic aneurysm // Front. Genet. 2023. V. 14. https://doi.org/10.3389/fgene.2023.115389
Дополнительные файлы
