Effect of Light Intensity and Spectral Composition on Electron Transport in Chloroplasts in situ and in silico

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Light-induced redox transformations of P700, the reaction center of photosystem I, were studied by EPR method depending on the illumination conditions of plant leaves (intensity and spectral composition of the active light). Within the framework of a mathematical model, the key stages of electron transfer along the noncyclic electron transport chain containing photosystems I and II and mobile transporters (plastoquinone, plastocyanin, ferredoxin) and the processes of trans-thylakoid proton transfer associated with ATP synthesis were considered. The mechanisms of pH-dependent regulation of electron transport in chloroplasts at the acceptor and donor sites of photosystem I have been analyzed. The modeling results are in agreement with experimental data on the kinetics of light-induced transformations of P700 in chloroplasts of higher plants. The results obtained are discussed in the context of "short-term" pH-dependent mechanisms of electron transport regulation in chloroplasts in situ.

作者简介

B. Trubitsin

Lomonosov Moscow State University

Moscow, Russia

A. Vershubskii

Lomonosov Moscow State University

Moscow, Russia

D. Guseinova

Lomonosov Moscow State University

Moscow, Russia

A. Tikhonov

Lomonosov Moscow State University

Email: an_itkhonov@mail.ru
Moscow, Russia

参考

  1. Эдварлс Д. и Уокер Д. Фотосинтез C3- и C4-растений: механизмы и регуляция (Мир, М., 1986).
  2. Blankenship R. E. Molecular mechanisms of photosynthesis (Blackwell Science Inc., Malden, MA., 2002).
  3. Walker D. A. The Z-scheme – down hill all the way. Trends Plant Sci., 7 (4), 183–185 (2002). doi: 10.1016/S1360-1385(02)02242-2
  4. Ruban A. The photosynthetic membrane: Molecular mechanisms and biophysics of light harvesting (John Wiley & Sons, Ltd., 2012). doi: 10.1002/9781118447628
  5. Andersson I. Catalysis and regulation in Rubisco. J. Exp. Bot. 59, 1555–1568 (2008). doi: 10.1093/jxb/ern091
  6. Strand D. D., Fisher N., and Kramer D. M. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Chloroplasts: Current research and future trends. Ed. by H. Kirchhoff (Caister Acad. Press, Norfolk, UK, 2016), pp. 89–100.
  7. Shikanai T. and Yamamoto H. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol. Plant., 10 (1), 20–29 (2017). doi: 10.1016/j.molp.2016.08.004
  8. Balsera M., Schürman P., and Buchanan B. B. Redox regulation in chloroplasts. In: Chloroplasts: Current research and future trends. Ed. by H. Kirchhoff (Caister Acad. Press, Norfolk, UK, 2016), pp. 187–207.
  9. Li Z., Wakao S., Fischer B. B., and Niyogi K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol., 60, 239–260 (2009). doi: 10.1146/annurev.arplant.58.032806.103844
  10. Asada K. The water-water cycle in chloroplasts. Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Molec. Biol., 50(1), 601–639 (1999). doi: 10.1146/annurev.arplant.50.1.601
  11. Foyer C. H. and Noctor G. Oxygen processing in photosynthesis: regulation and signalling. New Phytol., 146, 359–388 (2000). doi: 10.1046/j.1469–8137.2000.00667.x
  12. Shapiguzov A., Vainonen J.P., Wrzaczek M., and Kangasjärvi J. ROS-talk – how the apoplast, the chloroplast, and the nucleus get a message through. Front. Plant Sci., 3, 292 (2012). doi: 10.3389/fpls.2012.00292
  13. Demmig-Adams B. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol., 39, 474–482 (1998).
  14. Demmig-Adams B., Cohut C. M., Muller O., and Adams W. W. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth. Res., 113, 75–88 (2012). doi: 10.1007/s11120-012-9761-6
  15. Khan I., Sohail, Zaman S., Li G., and Fu M. Adaptive responses of plants to light stress: mechanisms of photoprotection and acclimation. A review. Front. Plant Sci., 16, 1550125 (2025). doi: 10.3389/fpls.2025.1550125
  16. Long S. P., Taylor S. H., Butges S. J., Carmo-Silva E., Lawson T., De Souza A. P., Leonelli L., and Wang Y. Into the shadow and back into sunlight: Photosynthesis in fluctuating light. Annu. Rev. Plant Biol., 73, 617–648 (2022). doi: 10.1146/annurev-arplant-070221-024745
  17. Buchanan B. B. Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol., 31, 341–374 (1980).
  18. Rochaix J.-D. Regulation of photosynthetic electron transport. Biochim. Biophys. Acta, 1807 (3), 375–383 (2011). doi: 10.1016/j.bbabio.2010.11.010
  19. Mott K. A. and Berry J. A. Effects of pH on activity and activation of ribulose 1,5-bisphosphate carboxylase in air level CO2. Plant Physiol., 82 (1), 77–82 (1986). doi: 10.1104/pp.82.1.77
  20. Horton P. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil. Trans. Roy. Soc. B: Biol. Sci., 367 (1608), 3455–3465 (2012). doi: 10.1098/rstb.2012.0069
  21. Tikhonov A. N. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res., 116 (2–3), 511–534 (2013). doi: 10.1007/s11120-013-9845-y
  22. Järvi S., Gollan P. J., and Aro E.-M. Understanding the roles of the intratthylakoid lumen in photosynthetic regulation. Front. Plant Sci., 4, 434 (2013). doi: 10.3389/fpls.2013.00434
  23. Kono M. and Terashima I. J. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. Photochem. Photobiol. B, 137, 89–99 (2014). doi: 10.1016/j.jphotobiol.2014.02.016
  24. Banas A. K., Aggarwal C., Labuz J., Szatelman O., and Gabrys H. Blue light signalling in chloroplast movements. J. Exp. Bot., 63 (4), 1559–1574 (2012). doi: 10.1093/jxb/err429
  25. Вершубский А. В., Приклонский В. И. и Тихонов А. Н. Математическое моделирование электронного и протонного транспорта, сопряженного с синтезом ATP в хлоропластах. Биофизика, 49, 57–71 (2004).
  26. Vershubskii A. V., Kuvykin I. V., Priklonsky V. I., and Tikhonov A. N. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico. Biosystems, 103 (2), 164–179 (2011). doi: 10.1016/j.biosystems.2010.08.002
  27. Вершубский А. В. и Тихонов А. Н. Электронный транспорт и трансмембранный перенос протонов в фотосинтетических системах оксигенного типа in silico. Биофизика, 58 (1), 75–89 (2013).
  28. Tikhonov A. N. and Vershubskii A. V. Computer modeling of electron and proton transport in chloroplasts. Biosystems, 121, 1–21 (2014). doi: 10.1016/j.biosystems.2014.04.007
  29. Вершубский А. В., Невыпивцев С. М. и Тихонов А. Н. Моделирование электронного и протонного транспорта в мембранах хлоропластов с учетом тиоредоксин-зависимой активации цикла Кальвина–Бенсона и ATP-синтазы. Биол. мембраны, 35 (2), 87–103 (2018). doi: 10.7868/S0233475518020019
  30. Вершубский А. В. и Тихонов А. Н. pH-зависимая регуляция электронного и протонного транспорта в хлоропластах in situ и in silico. Биол. мембраны, 36 (4), 242–254 (2019).
  31. Вершубский А. В., Приклонский В. И. и Тихонов А. Н. Оксигенный фотосинтез: индукция флуоресценции хлорофилла и регуляция электронного транспорта в тилакоидных мембранах in silico. Биол. мембраны, 42 (1), 3–19 (2025).
  32. Рууге Э. К. и Тихонов А. Н. Электронный парамагнитный резонанс: исследование механизмов регуляции световых стадий фотосинтеза растений. Биофизика, 67 (3), 516–523 (2022). doi: 10.31857/S0006302922030097
  33. Кукушкин А. К. и Тихонов А. Н. Лекции по биофизике фотосинтеза растений (Изд-во МГУ, М., 1988).
  34. Караваев В. А. и Кукушкин А. К. Теоретическая модель световых и темновых процессов фотосинтеза: проблема регуляции. Биофизика, 38 (6), 958–975 (1993).
  35. Дубинский А. Ю. и Тихонов А. Н. Регуляция электронного и протонного транспорта в хлоропластах. Кинетическая модель и ее сравнение с экспериментом. Биофизика, 39 (4), 652–665 (1994).
  36. Дубинский А. Ю. и Тихонов А. Н. Математическая модель тилакоида как распределенной гетерогенной системы электронного и протонного транспорта. Биофизика, 42 (3), 644–661 (1997).
  37. Караваев В. А. и Гордиенко Т. В. Теоретическое изучение индукционных эффектов в фотосинтезе высших растений. Изв. РАН, сер. биол., № 1, 41–47 (2003).
  38. Караваев В. А. Моделирование колебательного режима фотосинтеза с учетом взаимодействия световых и темновых реакций. Биофизика, 33 (5), 876–877 (1988).
  39. Караваев В. А. Взаимодействие световых и темновых процессов фотосинтеза (теоретическое описание). ДАН СССР, 302 (1), 218–221 (1988).
  40. Johnson M. P. and Ruban A. V. Rethinking the existence of a steady state Δψ component of the proton motive force across plant thylakoid membranes. Photosynth. Res., 60 (1–2), 151–163 (2014). doi: 10.1007/s11120-013-9817-2
  41. Wilson S., Johnson M. P., and Ruban A. V. Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light. Plant Physiol., 187 (1), 263–275 (2021). doi: 10.1093/plphys/ktab270
  42. Zavater A., Chow W. S., and Cheah M. N. The action spectrum of Photosystem II photoinactivation in visible light. J. Plant Physiol. B: Biology, 152, 247–260 (2015). doi: 10.1016/j.jphotobiol.2015.08.007
  43. Suslichenko I. S., Trubitsin B. V., Vershubskii A. V., and Tikhonov A. N. The noninvasive monitoring of the redox status of photosynthetic electron transport in Hibiscus rosa-sinensis and Tradescantia leaves. Plant Physiol. Biochem., 185, 233–243 (2022). doi: 10.1016/j.plaphy.2022.06.002
  44. Мариннин Н. А., Сусличенко И. С. и Тихонов А. Н. Регуляция электронного транспорта в хлоропластах; индукционные процессы в листьях растений рода Cucumis. Биофизика, 70 (1), 59–71 (2025). doi: 10.31857/S0006302925010074, EDN: LXLIGZ
  45. Беньков М. А., Сусличенко И. С., Трубицин Б. В. и Тихонов А. Н. Влияние акклиматизации растений на электронный транспорт в мембранах хлоропластов Cucumis sativus и Cucumis melo. Биол. мембраны, 40 (3), 172–187 (2023). doi: 10.31857/S0233475523030039
  46. Klughammer V. and Schreiber U. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynth. Res., 128 (2), 195–214 (2916). doi: 10.1007/s11120-016-0219-0
  47. Schreiber U. Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynth. Res., 134 (3), 195–214 (2916). doi: 10.1007/s11120-017-0394-7
  48. Tikhonov A. N. Induction events and short-term regulation of electron transport in chloroplasts: an overview. Photosynth. Res., 125 (1–2), 65–94 (2015). doi: 10.1007/s11120-015-0094-0
  49. Kirchhoff H., Hall C., Wood M., Herbstova M., Tsabari O., Nevo R., Charuvi D., Shimoni E. and Reich Z. Dynamic control of protein diffusion within the grand thylakoid lumen. Proc. Natl. Acad. Sci. USA, 108 (50), 20248–20253 (2011). doi: 10.1073/pnas.1104141109
  50. Anderson J. M. Photoregulation of the composition, function, and structure of thylakoid membranes. Annu. Rev. Plant Physiol., 37 (1), 93–136 (1986). doi: 10.1146/annurev.pp.37.060186.000521
  51. Anderson J. M., Chow, W. S., and Park Y.-I. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth. Res., 46, 129–139 (1995). doi: 10.1007/BF00020423
  52. Puthiyaveeti S., Kirchhoff H., and Hubner R. Structural and functional dynamics of the thylakoid membrane system. In: Chloroplasts: current research and future trends. Ed. by H. Kirchhoff (Caister Acad. Press, Norfolk, UK, 2016), pp. 59–87. doi: 10.21775/9781910190470.03
  53. Lemelle S. and Rochaik J.-D. State transitions at the crossroad of thylakoid signaling pathways. Photosynth. Res., 106 (1–2), 33–46 (2010). doi: 10.1007/s11120-010-9538-8
  54. Hepworth C., Wood W. H., Emrich-Mills T. Z., Proctor M. S., Casson S., and Johnson M. P. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. Nat. Plants, 7, 87–98 (2021). doi: 10.1038/s41477-020-00828-3
  55. Smirnoff N. The function and metabolism of ascorbic acid in plants, Ann. Bot., 78, 661–669 (1996). doi: 10.1006/anbo.1996.0175.
  56. Tikhonov A. N. Modeling electron and proton transport in chloroplasts. In: Chloroplasts. Current Research and Future Trends. Ed. by H. Kirchhoff (Caister Acad. Press, Norfolk, UK, 2016), pp. 101–134 (2016). doi: 10.21775/9781910190470.05
  57. Trubitsin B. V., Mamedov M. D., Semenov A. Yu., and Tikhonov A. N. Interaction of ascorbate with photosystem. Photosynth. Res., 122 (2), 215–231 (2014). doi: 10.1007/s11120-014-0023-7
  58. Noguchi K. and Yoshida K. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion, 8 (1), 87–99 (2008). doi: 10.1016/j.mito.2007.09.003
  59. Selinski J. and Scheibe R. Malate valves: old shuttles with new perspectives. Plant Biol., 21 (Suppl. 1), 21–30 (2019). doi: 10.1111/plb.12869

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025